基于自适应小波神经网络的EV/HEV锂电池荷电状态在线高精度估计

Feng-wu Zhou, Lujun Wang, Huipin Lin, Zhengyu Lv
{"title":"基于自适应小波神经网络的EV/HEV锂电池荷电状态在线高精度估计","authors":"Feng-wu Zhou, Lujun Wang, Huipin Lin, Zhengyu Lv","doi":"10.1109/ECCE-ASIA.2013.6579145","DOIUrl":null,"url":null,"abstract":"The state of charge online estimation of EV/HEV lithium battery with high accuracy is very important, Since it can be used to prolong the battery lifetime and improve its performances. Traditional SOC estimation algorithms have show their drawbacks apparently, so the Adaptive Wavelet Neural Network(AWNN) based SOC estimation model is presented. By using adaptive algorithm to train the model, the accurate online SOC estimation is implemented. The simulation and experiment results are given and show that the proposed algorithm is an effective and feasible method to estimate the SOC of the lithium battery with fastest convergence speed and most high accuracy.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"High accuracy state-of-charge online estimation of EV/HEV lithium batteries based on Adaptive Wavelet Neural Network\",\"authors\":\"Feng-wu Zhou, Lujun Wang, Huipin Lin, Zhengyu Lv\",\"doi\":\"10.1109/ECCE-ASIA.2013.6579145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state of charge online estimation of EV/HEV lithium battery with high accuracy is very important, Since it can be used to prolong the battery lifetime and improve its performances. Traditional SOC estimation algorithms have show their drawbacks apparently, so the Adaptive Wavelet Neural Network(AWNN) based SOC estimation model is presented. By using adaptive algorithm to train the model, the accurate online SOC estimation is implemented. The simulation and experiment results are given and show that the proposed algorithm is an effective and feasible method to estimate the SOC of the lithium battery with fastest convergence speed and most high accuracy.\",\"PeriodicalId\":301487,\"journal\":{\"name\":\"2013 IEEE ECCE Asia Downunder\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE ECCE Asia Downunder\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE-ASIA.2013.6579145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

高精度的EV/HEV锂电池充电状态在线估计对于延长电池寿命和提高电池性能具有重要意义。针对传统的荷电状态估计算法存在的明显缺陷,提出了一种基于自适应小波神经网络的荷电状态估计模型。采用自适应算法对模型进行训练,实现了准确的在线SOC估计。仿真和实验结果表明,该算法收敛速度快、精度高,是一种有效可行的锂电池荷电状态估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High accuracy state-of-charge online estimation of EV/HEV lithium batteries based on Adaptive Wavelet Neural Network
The state of charge online estimation of EV/HEV lithium battery with high accuracy is very important, Since it can be used to prolong the battery lifetime and improve its performances. Traditional SOC estimation algorithms have show their drawbacks apparently, so the Adaptive Wavelet Neural Network(AWNN) based SOC estimation model is presented. By using adaptive algorithm to train the model, the accurate online SOC estimation is implemented. The simulation and experiment results are given and show that the proposed algorithm is an effective and feasible method to estimate the SOC of the lithium battery with fastest convergence speed and most high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of a Switched Reluctance Motor using Grain-Oriented electric steel sheet Predictive current control based multi-pulse flexible-topology thyristor AC/DC converter and its application in wind energy conversion system Hybrid winding concept for toroids Dynamic performances of ballast for T5 fluorescent lamps Recent related technologies for EV/HEV applications in JAPAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1