基于深度迁移学习的离线手写签名验证与识别

A. Foroozandeh, Ataollah Askari Hemmat, Hossein Rabbani
{"title":"基于深度迁移学习的离线手写签名验证与识别","authors":"A. Foroozandeh, Ataollah Askari Hemmat, Hossein Rabbani","doi":"10.1109/MVIP49855.2020.9187481","DOIUrl":null,"url":null,"abstract":"Recently, deep convolutional neural networks have been successfully applied in different fields of computer vision and pattern recognition. Offline handwritten signature is one of the most important biometrics applied in banking systems, administrative and financial applications, which is a challenging task and still hard. The aim of this study is to review of the presented signature verification/recognition methods based on the convolutional neural networks and also evaluate the performance of some prominent available deep convolutional neural networks in offline handwritten signature verification/recognition as feature extractor using transfer learning. This is done using four pretrained models as the most used general models in computer vision tasks including VGG16, VGG19, ResNet50, and InceptionV3 and also two pre-trained models especially presented for signature processing tasks including SigNet and SigNet- F. Experiments have been conducted using two benchmark signature datasets: GPDS Synthetic signature dataset and MCYT- 75 as Latin signature datasets, and two Persian datasets: UTSig and FUM-PHSD. Obtained experimental results, in comparison with literature, verify the effectiveness of the models: VGG16 and SigNet for signature verification and the superiority of VGG16 in signature recognition task.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning\",\"authors\":\"A. Foroozandeh, Ataollah Askari Hemmat, Hossein Rabbani\",\"doi\":\"10.1109/MVIP49855.2020.9187481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep convolutional neural networks have been successfully applied in different fields of computer vision and pattern recognition. Offline handwritten signature is one of the most important biometrics applied in banking systems, administrative and financial applications, which is a challenging task and still hard. The aim of this study is to review of the presented signature verification/recognition methods based on the convolutional neural networks and also evaluate the performance of some prominent available deep convolutional neural networks in offline handwritten signature verification/recognition as feature extractor using transfer learning. This is done using four pretrained models as the most used general models in computer vision tasks including VGG16, VGG19, ResNet50, and InceptionV3 and also two pre-trained models especially presented for signature processing tasks including SigNet and SigNet- F. Experiments have been conducted using two benchmark signature datasets: GPDS Synthetic signature dataset and MCYT- 75 as Latin signature datasets, and two Persian datasets: UTSig and FUM-PHSD. Obtained experimental results, in comparison with literature, verify the effectiveness of the models: VGG16 and SigNet for signature verification and the superiority of VGG16 in signature recognition task.\",\"PeriodicalId\":255375,\"journal\":{\"name\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP49855.2020.9187481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9187481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来,深度卷积神经网络已成功地应用于计算机视觉和模式识别的各个领域。离线手写签名是银行系统、行政和金融应用中最重要的生物识别技术之一,这是一项具有挑战性且仍然困难的任务。本研究的目的是回顾现有的基于卷积神经网络的签名验证/识别方法,并评估一些著名的深度卷积神经网络在离线手写签名验证/识别中作为特征提取器使用迁移学习的性能。实验使用了四个预训练模型作为计算机视觉任务中最常用的通用模型,包括VGG16、VGG19、ResNet50和InceptionV3,以及两个专门用于签名处理任务的预训练模型,包括SigNet和SigNet- f。实验使用了两个基准签名数据集:GPDS合成签名数据集和MCYT- 75作为拉丁签名数据集,以及两个波斯语数据集:UTSig和FUM-PHSD。得到的实验结果,与文献对比,验证了VGG16和SigNet模型用于签名验证的有效性,以及VGG16在签名识别任务中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning
Recently, deep convolutional neural networks have been successfully applied in different fields of computer vision and pattern recognition. Offline handwritten signature is one of the most important biometrics applied in banking systems, administrative and financial applications, which is a challenging task and still hard. The aim of this study is to review of the presented signature verification/recognition methods based on the convolutional neural networks and also evaluate the performance of some prominent available deep convolutional neural networks in offline handwritten signature verification/recognition as feature extractor using transfer learning. This is done using four pretrained models as the most used general models in computer vision tasks including VGG16, VGG19, ResNet50, and InceptionV3 and also two pre-trained models especially presented for signature processing tasks including SigNet and SigNet- F. Experiments have been conducted using two benchmark signature datasets: GPDS Synthetic signature dataset and MCYT- 75 as Latin signature datasets, and two Persian datasets: UTSig and FUM-PHSD. Obtained experimental results, in comparison with literature, verify the effectiveness of the models: VGG16 and SigNet for signature verification and the superiority of VGG16 in signature recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning A High-Accuracy, Cost-Effective People Counting Solution Based on Visual Depth Data Source Camera Identification Using WLBP Descriptor Convolutional Neural Network for Building Extraction from High-Resolution Remote Sensing Images PCB Defect Detection Using Denoising Convolutional Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1