Thomas Chaton, N. Chaulet, Sofiane Horache, Loïc Landrieu
{"title":"Torch-Points3D: 3D点云上可重复深度学习的模块化多任务框架","authors":"Thomas Chaton, N. Chaulet, Sofiane Horache, Loïc Landrieu","doi":"10.1109/3DV50981.2020.00029","DOIUrl":null,"url":null,"abstract":"We introduce Torch-Points3D, an open-source framework designed to facilitate the use of deep networks on 3D data. Its modular design, efficient implementation, and user-friendly interfaces make it a relevant tool for research and productization alike. Beyond multiple quality-of-life features, our goal is to standardize a higher level of transparency and reproducibility in 3D deep learning research, and to lower its barrier to entry. In this paper, we present the design principles of Torch- Points3D, as well as extensive benchmarks of multiple stateof- the-art algorithms and inference schemes across several datasets and tasks. The modularity of Torch-Points3D allows us to design fair and rigorous experimental protocols in which all methods are evaluated in the same conditions. The Torch-Points3D repository: https://github. com/nicolas-chaulet/torch-points3d.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds\",\"authors\":\"Thomas Chaton, N. Chaulet, Sofiane Horache, Loïc Landrieu\",\"doi\":\"10.1109/3DV50981.2020.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Torch-Points3D, an open-source framework designed to facilitate the use of deep networks on 3D data. Its modular design, efficient implementation, and user-friendly interfaces make it a relevant tool for research and productization alike. Beyond multiple quality-of-life features, our goal is to standardize a higher level of transparency and reproducibility in 3D deep learning research, and to lower its barrier to entry. In this paper, we present the design principles of Torch- Points3D, as well as extensive benchmarks of multiple stateof- the-art algorithms and inference schemes across several datasets and tasks. The modularity of Torch-Points3D allows us to design fair and rigorous experimental protocols in which all methods are evaluated in the same conditions. The Torch-Points3D repository: https://github. com/nicolas-chaulet/torch-points3d.\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds
We introduce Torch-Points3D, an open-source framework designed to facilitate the use of deep networks on 3D data. Its modular design, efficient implementation, and user-friendly interfaces make it a relevant tool for research and productization alike. Beyond multiple quality-of-life features, our goal is to standardize a higher level of transparency and reproducibility in 3D deep learning research, and to lower its barrier to entry. In this paper, we present the design principles of Torch- Points3D, as well as extensive benchmarks of multiple stateof- the-art algorithms and inference schemes across several datasets and tasks. The modularity of Torch-Points3D allows us to design fair and rigorous experimental protocols in which all methods are evaluated in the same conditions. The Torch-Points3D repository: https://github. com/nicolas-chaulet/torch-points3d.