Torch-Points3D: 3D点云上可重复深度学习的模块化多任务框架

Thomas Chaton, N. Chaulet, Sofiane Horache, Loïc Landrieu
{"title":"Torch-Points3D: 3D点云上可重复深度学习的模块化多任务框架","authors":"Thomas Chaton, N. Chaulet, Sofiane Horache, Loïc Landrieu","doi":"10.1109/3DV50981.2020.00029","DOIUrl":null,"url":null,"abstract":"We introduce Torch-Points3D, an open-source framework designed to facilitate the use of deep networks on 3D data. Its modular design, efficient implementation, and user-friendly interfaces make it a relevant tool for research and productization alike. Beyond multiple quality-of-life features, our goal is to standardize a higher level of transparency and reproducibility in 3D deep learning research, and to lower its barrier to entry. In this paper, we present the design principles of Torch- Points3D, as well as extensive benchmarks of multiple stateof- the-art algorithms and inference schemes across several datasets and tasks. The modularity of Torch-Points3D allows us to design fair and rigorous experimental protocols in which all methods are evaluated in the same conditions. The Torch-Points3D repository: https://github. com/nicolas-chaulet/torch-points3d.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds\",\"authors\":\"Thomas Chaton, N. Chaulet, Sofiane Horache, Loïc Landrieu\",\"doi\":\"10.1109/3DV50981.2020.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Torch-Points3D, an open-source framework designed to facilitate the use of deep networks on 3D data. Its modular design, efficient implementation, and user-friendly interfaces make it a relevant tool for research and productization alike. Beyond multiple quality-of-life features, our goal is to standardize a higher level of transparency and reproducibility in 3D deep learning research, and to lower its barrier to entry. In this paper, we present the design principles of Torch- Points3D, as well as extensive benchmarks of multiple stateof- the-art algorithms and inference schemes across several datasets and tasks. The modularity of Torch-Points3D allows us to design fair and rigorous experimental protocols in which all methods are evaluated in the same conditions. The Torch-Points3D repository: https://github. com/nicolas-chaulet/torch-points3d.\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

我们介绍Torch-Points3D,这是一个开源框架,旨在促进在3D数据上使用深度网络。它的模块化设计、高效的实现和用户友好的界面使其成为研究和产品化的相关工具。除了多种生活质量特征之外,我们的目标是在3D深度学习研究中标准化更高水平的透明度和可重复性,并降低其进入门槛。在本文中,我们介绍了Torch- Points3D的设计原则,以及跨多个数据集和任务的多个最先进算法和推理方案的广泛基准测试。Torch-Points3D的模块化使我们能够设计公平和严格的实验协议,其中所有方法在相同的条件下进行评估。Torch-Points3D资源库:https://github。com/nicolas-chaulet/torch-points3d。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds
We introduce Torch-Points3D, an open-source framework designed to facilitate the use of deep networks on 3D data. Its modular design, efficient implementation, and user-friendly interfaces make it a relevant tool for research and productization alike. Beyond multiple quality-of-life features, our goal is to standardize a higher level of transparency and reproducibility in 3D deep learning research, and to lower its barrier to entry. In this paper, we present the design principles of Torch- Points3D, as well as extensive benchmarks of multiple stateof- the-art algorithms and inference schemes across several datasets and tasks. The modularity of Torch-Points3D allows us to design fair and rigorous experimental protocols in which all methods are evaluated in the same conditions. The Torch-Points3D repository: https://github. com/nicolas-chaulet/torch-points3d.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1