gpu上计算机断层扫描图像的细粒度代数重建技术

Xiaodong Yu, Hao Wang, Wu-chun Feng, H. Gong, Guohua Cao
{"title":"gpu上计算机断层扫描图像的细粒度代数重建技术","authors":"Xiaodong Yu, Hao Wang, Wu-chun Feng, H. Gong, Guohua Cao","doi":"10.1109/CCGrid.2016.96","DOIUrl":null,"url":null,"abstract":"Algebraic reconstruction technique (ART) is an iterative algorithm for computed tomography (CT) image reconstruction. Due to the high computational cost, researchers turn to modern HPC systems with GPUs to accelerate the ART algorithm. However, the existing proposals suffer from inefficient designs of compressed data structure and computational kernel on GPUs. In this paper, we identify the computational patterns in the ART as the product of a sparse matrix (and its transpose) with multiple vectors (SpMV and SpMV_T). Because the implementations with well-tuned libraries, including cuSPARSE, BRC, and CSR5, underperform the expectations, we propose cuART, a complete compression and parallelization solution for the ART-based CT on GPUs. Based on the physical characteristics, i.e., the symmetries in the system matrix, we propose the symmetry-based CSR format (SCSR), which can further compress data storage by removing symmetric but redundant non-zero elements. Leveraging the sparsity patterns of X-ray projection, wetransform the CSR format to multiple dense sub-matrices in SCSR. We then design a transposition-free kernel to optimize the data access for both SpMV and SpMV_T. The experimental results illustrate that our mechanism can reduce memory usage significantly and make practical datasets fit into a single GPU. Our results also illustrate the superior performance of cuART compared to the existing methods on CPU and GPU.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"cuART: Fine-Grained Algebraic Reconstruction Technique for Computed Tomography Images on GPUs\",\"authors\":\"Xiaodong Yu, Hao Wang, Wu-chun Feng, H. Gong, Guohua Cao\",\"doi\":\"10.1109/CCGrid.2016.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic reconstruction technique (ART) is an iterative algorithm for computed tomography (CT) image reconstruction. Due to the high computational cost, researchers turn to modern HPC systems with GPUs to accelerate the ART algorithm. However, the existing proposals suffer from inefficient designs of compressed data structure and computational kernel on GPUs. In this paper, we identify the computational patterns in the ART as the product of a sparse matrix (and its transpose) with multiple vectors (SpMV and SpMV_T). Because the implementations with well-tuned libraries, including cuSPARSE, BRC, and CSR5, underperform the expectations, we propose cuART, a complete compression and parallelization solution for the ART-based CT on GPUs. Based on the physical characteristics, i.e., the symmetries in the system matrix, we propose the symmetry-based CSR format (SCSR), which can further compress data storage by removing symmetric but redundant non-zero elements. Leveraging the sparsity patterns of X-ray projection, wetransform the CSR format to multiple dense sub-matrices in SCSR. We then design a transposition-free kernel to optimize the data access for both SpMV and SpMV_T. The experimental results illustrate that our mechanism can reduce memory usage significantly and make practical datasets fit into a single GPU. Our results also illustrate the superior performance of cuART compared to the existing methods on CPU and GPU.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

代数重建技术(ART)是一种用于计算机断层扫描(CT)图像重建的迭代算法。由于计算成本高,研究人员转向带有gpu的现代高性能计算系统来加速ART算法。然而,现有的方案存在压缩数据结构设计和gpu计算内核设计效率低下的问题。在本文中,我们将ART中的计算模式识别为稀疏矩阵(及其转置)与多个向量(SpMV和SpMV_T)的乘积。由于包括cuSPARSE、BRC和CSR5在内的优化库的实现低于预期,因此我们提出了基于gpu的基于art的CT的完整压缩和并行化解决方案cuART。基于系统矩阵的对称性这一物理特性,提出了基于对称性的CSR格式(SCSR),该格式通过去除对称但冗余的非零元素进一步压缩数据存储。利用x射线投影的稀疏模式,我们将CSR格式转换为SCSR中的多个密集子矩阵。然后,我们设计了一个无转置的内核来优化SpMV和SpMV_T的数据访问。实验结果表明,该机制可以显著降低内存使用,并使实际数据集适合单个GPU。我们的结果也表明,与现有的CPU和GPU上的方法相比,cuART的性能更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cuART: Fine-Grained Algebraic Reconstruction Technique for Computed Tomography Images on GPUs
Algebraic reconstruction technique (ART) is an iterative algorithm for computed tomography (CT) image reconstruction. Due to the high computational cost, researchers turn to modern HPC systems with GPUs to accelerate the ART algorithm. However, the existing proposals suffer from inefficient designs of compressed data structure and computational kernel on GPUs. In this paper, we identify the computational patterns in the ART as the product of a sparse matrix (and its transpose) with multiple vectors (SpMV and SpMV_T). Because the implementations with well-tuned libraries, including cuSPARSE, BRC, and CSR5, underperform the expectations, we propose cuART, a complete compression and parallelization solution for the ART-based CT on GPUs. Based on the physical characteristics, i.e., the symmetries in the system matrix, we propose the symmetry-based CSR format (SCSR), which can further compress data storage by removing symmetric but redundant non-zero elements. Leveraging the sparsity patterns of X-ray projection, wetransform the CSR format to multiple dense sub-matrices in SCSR. We then design a transposition-free kernel to optimize the data access for both SpMV and SpMV_T. The experimental results illustrate that our mechanism can reduce memory usage significantly and make practical datasets fit into a single GPU. Our results also illustrate the superior performance of cuART compared to the existing methods on CPU and GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1