简化IaaS云中工作流的资源发放

Amelie Chi Zhou, Bingsheng He
{"title":"简化IaaS云中工作流的资源发放","authors":"Amelie Chi Zhou, Bingsheng He","doi":"10.1109/CloudCom.2014.129","DOIUrl":null,"url":null,"abstract":"Resource provisioning is an important and complicated problem for scientific workflows in Infrastructure-as-a-service (IaaS) clouds. Scientists are facing the complexities resulting from the diverse cloud offerings, complex workflow structures and characteristics as well as various user requirements on budget and performance. In this paper, we review the related work on the cost-aware optimizations of workflows in IaaS clouds and summarize the underlying research issues. Existing studies are not effective enough on finding good solutions to workflow optimization problems due to the complexity of workflows and the cloud dynamics. The heuristics proposed in the existing work are specifically designed for certain applications or certain budget and performance requirements. To address those issues, we propose a flexible and effective optimization system to simplify the resource provisioning for scientific workflows in IaaS clouds. The system adopts a probabilistic QoS notion to obtain good optimization results in the dynamic cloud environment and a cloud- and workflow-specific declarative language to specify various workflow optimization problems. We summarize our ongoing work and present some preliminary results on real-world scientific workflows. The experimental results demonstrate the effectiveness of our system on monetary cost optimizations and its capability to solve a wide class of optimization problems for scientific workflows.","PeriodicalId":249306,"journal":{"name":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Simplified Resource Provisioning for Workflows in IaaS Clouds\",\"authors\":\"Amelie Chi Zhou, Bingsheng He\",\"doi\":\"10.1109/CloudCom.2014.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resource provisioning is an important and complicated problem for scientific workflows in Infrastructure-as-a-service (IaaS) clouds. Scientists are facing the complexities resulting from the diverse cloud offerings, complex workflow structures and characteristics as well as various user requirements on budget and performance. In this paper, we review the related work on the cost-aware optimizations of workflows in IaaS clouds and summarize the underlying research issues. Existing studies are not effective enough on finding good solutions to workflow optimization problems due to the complexity of workflows and the cloud dynamics. The heuristics proposed in the existing work are specifically designed for certain applications or certain budget and performance requirements. To address those issues, we propose a flexible and effective optimization system to simplify the resource provisioning for scientific workflows in IaaS clouds. The system adopts a probabilistic QoS notion to obtain good optimization results in the dynamic cloud environment and a cloud- and workflow-specific declarative language to specify various workflow optimization problems. We summarize our ongoing work and present some preliminary results on real-world scientific workflows. The experimental results demonstrate the effectiveness of our system on monetary cost optimizations and its capability to solve a wide class of optimization problems for scientific workflows.\",\"PeriodicalId\":249306,\"journal\":{\"name\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2014.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2014.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

资源供应是基础设施即服务(IaaS)云中科学工作流的一个重要而复杂的问题。科学家们正面临着各种各样的云产品、复杂的工作流程结构和特征以及各种用户对预算和性能的要求所带来的复杂性。在本文中,我们回顾了IaaS云中成本感知工作流优化的相关工作,并总结了潜在的研究问题。由于工作流的复杂性和云动力学,现有的研究在寻找工作流优化问题的好的解决方案方面不够有效。现有工作中提出的启发式方法是专门为某些应用程序或某些预算和性能要求设计的。为了解决这些问题,我们提出了一个灵活有效的优化系统,以简化IaaS云中科学工作流的资源配置。系统采用概率QoS的概念在动态云环境下获得良好的优化效果,并采用针对云和工作流的声明性语言来指定各种工作流优化问题。我们总结了我们正在进行的工作,并在现实世界的科学工作流程中提出了一些初步结果。实验结果证明了我们的系统在货币成本优化方面的有效性,以及它解决科学工作流程中广泛的优化问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified Resource Provisioning for Workflows in IaaS Clouds
Resource provisioning is an important and complicated problem for scientific workflows in Infrastructure-as-a-service (IaaS) clouds. Scientists are facing the complexities resulting from the diverse cloud offerings, complex workflow structures and characteristics as well as various user requirements on budget and performance. In this paper, we review the related work on the cost-aware optimizations of workflows in IaaS clouds and summarize the underlying research issues. Existing studies are not effective enough on finding good solutions to workflow optimization problems due to the complexity of workflows and the cloud dynamics. The heuristics proposed in the existing work are specifically designed for certain applications or certain budget and performance requirements. To address those issues, we propose a flexible and effective optimization system to simplify the resource provisioning for scientific workflows in IaaS clouds. The system adopts a probabilistic QoS notion to obtain good optimization results in the dynamic cloud environment and a cloud- and workflow-specific declarative language to specify various workflow optimization problems. We summarize our ongoing work and present some preliminary results on real-world scientific workflows. The experimental results demonstrate the effectiveness of our system on monetary cost optimizations and its capability to solve a wide class of optimization problems for scientific workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Performance Impact of Virtualization on an HPC Cloud Performance Study of Spindle, A Web Analytics Query Engine Implemented in Spark Role of System Modeling for Audit of QoS Provisioning in Cloud Services Dependability Analysis on Open Stack IaaS Cloud: Bug Anaysis and Fault Injection Delegated Access for Hadoop Clusters in the Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1