生成二进制矢量,优化给定的权重函数,应用于软判决解码

A. Valembois, M. Fossorier
{"title":"生成二进制矢量,优化给定的权重函数,应用于软判决解码","authors":"A. Valembois, M. Fossorier","doi":"10.1109/ITW.2001.955163","DOIUrl":null,"url":null,"abstract":"Many decoding algorithms need to compute some lists of binary vectors that minimize a given weight function. Furthermore, it is often desirable that these vectors are generated by increasing weight. The considered weight function is usually decreasing in the a priori likelihood that the vector yields correct decoding. We present a new technique to generate candidates for error patterns from the most a priori likely to the least, that proves significantly more efficient than any other known method.","PeriodicalId":288814,"journal":{"name":"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generation of binary vectors that optimize a given weight function with application to soft-decision decoding\",\"authors\":\"A. Valembois, M. Fossorier\",\"doi\":\"10.1109/ITW.2001.955163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many decoding algorithms need to compute some lists of binary vectors that minimize a given weight function. Furthermore, it is often desirable that these vectors are generated by increasing weight. The considered weight function is usually decreasing in the a priori likelihood that the vector yields correct decoding. We present a new technique to generate candidates for error patterns from the most a priori likely to the least, that proves significantly more efficient than any other known method.\",\"PeriodicalId\":288814,\"journal\":{\"name\":\"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2001.955163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2001.955163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多解码算法需要计算一些最小化给定权重函数的二进制向量列表。此外,通常希望通过增加权重来生成这些向量。所考虑的权重函数通常在向量产生正确解码的先验可能性中减小。我们提出了一种新的技术来生成候选的错误模式,从最先验的可能性到最小的可能性,证明比任何其他已知的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of binary vectors that optimize a given weight function with application to soft-decision decoding
Many decoding algorithms need to compute some lists of binary vectors that minimize a given weight function. Furthermore, it is often desirable that these vectors are generated by increasing weight. The considered weight function is usually decreasing in the a priori likelihood that the vector yields correct decoding. We present a new technique to generate candidates for error patterns from the most a priori likely to the least, that proves significantly more efficient than any other known method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of multiple access on uplink scheduling Using the mean reliability as a design and stopping criterion for turbo codes "Codes" on images and iterative phase unwrapping The advantages of non-binary turbo codes Analog decoding of product codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1