变长序列的语言建模:多重图的理论表述和评价

Sabine Deligne, F. Bimbot
{"title":"变长序列的语言建模:多重图的理论表述和评价","authors":"Sabine Deligne, F. Bimbot","doi":"10.1109/ICASSP.1995.479391","DOIUrl":null,"url":null,"abstract":"The multigram model assumes that language can be described as the output of a memoryless source that emits variable-length sequences of words. The estimation of the model parameters can be formulated as a maximum likelihood estimation problem from incomplete data. We show that estimates of the model parameters can be computed through an iterative expectation-maximization algorithm and we describe a forward-backward procedure for its implementation. We report the results of a systematical evaluation of multigrams for language modeling on the ATIS database. The objective performance measure is the test set perplexity. Our results show that multigrams outperform conventional n-grams for this task.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Language modeling by variable length sequences: theoretical formulation and evaluation of multigrams\",\"authors\":\"Sabine Deligne, F. Bimbot\",\"doi\":\"10.1109/ICASSP.1995.479391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multigram model assumes that language can be described as the output of a memoryless source that emits variable-length sequences of words. The estimation of the model parameters can be formulated as a maximum likelihood estimation problem from incomplete data. We show that estimates of the model parameters can be computed through an iterative expectation-maximization algorithm and we describe a forward-backward procedure for its implementation. We report the results of a systematical evaluation of multigrams for language modeling on the ATIS database. The objective performance measure is the test set perplexity. Our results show that multigrams outperform conventional n-grams for this task.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.479391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

摘要

多元图模型假设语言可以被描述为无记忆源的输出,该源发出可变长度的单词序列。模型参数的估计可以表述为不完全数据的极大似然估计问题。我们证明了模型参数的估计可以通过迭代期望最大化算法计算,并描述了其实现的前向后过程。我们报告了在ATIS数据库上对语言建模的多图进行系统评估的结果。客观性能度量是测试集的困惑度。我们的结果表明,在这个任务中,多重图优于传统的n图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Language modeling by variable length sequences: theoretical formulation and evaluation of multigrams
The multigram model assumes that language can be described as the output of a memoryless source that emits variable-length sequences of words. The estimation of the model parameters can be formulated as a maximum likelihood estimation problem from incomplete data. We show that estimates of the model parameters can be computed through an iterative expectation-maximization algorithm and we describe a forward-backward procedure for its implementation. We report the results of a systematical evaluation of multigrams for language modeling on the ATIS database. The objective performance measure is the test set perplexity. Our results show that multigrams outperform conventional n-grams for this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1