基于互补稀疏模式的稀疏dnn硬件友好推理

Elbruz Ozen, A. Orailoglu
{"title":"基于互补稀疏模式的稀疏dnn硬件友好推理","authors":"Elbruz Ozen, A. Orailoglu","doi":"10.1109/ICCAD51958.2021.9643452","DOIUrl":null,"url":null,"abstract":"Sparse deep learning models are known to be more accurate than their dense counterparts for equal parameter and computational budgets. Unstructured model pruning can deliver dramatic compression rates, yet the consequent irregular sparsity patterns lead to severe computational challenges for modern computational hardware. Our work introduces a set of complementary sparsity patterns to construct both highly expressive and inherently regular sparse neural network layers. We propose a novel training approach to evolve inherently regular sparsity configurations and transform the expressive power of the proposed layers into a competitive classification accuracy even under extreme sparsity constraints. The structure of the introduced sparsity patterns engenders optimal compression of the layer parameters into a dense representation. Moreover, the constructed layers can be processed in the compressed format with full-hardware utilization in minimally modified non-sparse computational hardware. The experimental results demonstrate superior compression rates and remarkable performance improvements in sparse neural network inference in systolic arrays.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolving Complementary Sparsity Patterns for Hardware-Friendly Inference of Sparse DNNs\",\"authors\":\"Elbruz Ozen, A. Orailoglu\",\"doi\":\"10.1109/ICCAD51958.2021.9643452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse deep learning models are known to be more accurate than their dense counterparts for equal parameter and computational budgets. Unstructured model pruning can deliver dramatic compression rates, yet the consequent irregular sparsity patterns lead to severe computational challenges for modern computational hardware. Our work introduces a set of complementary sparsity patterns to construct both highly expressive and inherently regular sparse neural network layers. We propose a novel training approach to evolve inherently regular sparsity configurations and transform the expressive power of the proposed layers into a competitive classification accuracy even under extreme sparsity constraints. The structure of the introduced sparsity patterns engenders optimal compression of the layer parameters into a dense representation. Moreover, the constructed layers can be processed in the compressed format with full-hardware utilization in minimally modified non-sparse computational hardware. The experimental results demonstrate superior compression rates and remarkable performance improvements in sparse neural network inference in systolic arrays.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,对于相同的参数和计算预算,稀疏深度学习模型比密集模型更准确。非结构化模型修剪可以提供惊人的压缩率,但随之而来的不规则稀疏模式给现代计算硬件带来了严峻的计算挑战。我们的工作引入了一组互补的稀疏模式来构建高表现力和固有规则的稀疏神经网络层。我们提出了一种新的训练方法来进化固有的规则稀疏性配置,并将所提出的层的表达能力转化为在极端稀疏性约束下具有竞争力的分类精度。引入的稀疏模式的结构可以将层参数优化压缩为密集表示。此外,构造的层可以在最小修改的非稀疏计算硬件中以全硬件利用率的压缩格式进行处理。实验结果表明,稀疏神经网络在收缩阵列中的压缩率和性能都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving Complementary Sparsity Patterns for Hardware-Friendly Inference of Sparse DNNs
Sparse deep learning models are known to be more accurate than their dense counterparts for equal parameter and computational budgets. Unstructured model pruning can deliver dramatic compression rates, yet the consequent irregular sparsity patterns lead to severe computational challenges for modern computational hardware. Our work introduces a set of complementary sparsity patterns to construct both highly expressive and inherently regular sparse neural network layers. We propose a novel training approach to evolve inherently regular sparsity configurations and transform the expressive power of the proposed layers into a competitive classification accuracy even under extreme sparsity constraints. The structure of the introduced sparsity patterns engenders optimal compression of the layer parameters into a dense representation. Moreover, the constructed layers can be processed in the compressed format with full-hardware utilization in minimally modified non-sparse computational hardware. The experimental results demonstrate superior compression rates and remarkable performance improvements in sparse neural network inference in systolic arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1