{"title":"社交媒体仇恨言论的目标和方面","authors":"A. Shvets, Paula Fortuna, Juan Soler, L. Wanner","doi":"10.18653/v1/2021.woah-1.19","DOIUrl":null,"url":null,"abstract":"Mainstream research on hate speech focused so far predominantly on the task of classifying mainly social media posts with respect to predefined typologies of rather coarse-grained hate speech categories. This may be sufficient if the goal is to detect and delete abusive language posts. However, removal is not always possible due to the legislation of a country. Also, there is evidence that hate speech cannot be successfully combated by merely removing hate speech posts; they should be countered by education and counter-narratives. For this purpose, we need to identify (i) who is the target in a given hate speech post, and (ii) what aspects (or characteristics) of the target are attributed to the target in the post. As the first approximation, we propose to adapt a generic state-of-the-art concept extraction model to the hate speech domain. The outcome of the experiments is promising and can serve as inspiration for further work on the task","PeriodicalId":166161,"journal":{"name":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","volume":"741 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Targets and Aspects in Social Media Hate Speech\",\"authors\":\"A. Shvets, Paula Fortuna, Juan Soler, L. Wanner\",\"doi\":\"10.18653/v1/2021.woah-1.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mainstream research on hate speech focused so far predominantly on the task of classifying mainly social media posts with respect to predefined typologies of rather coarse-grained hate speech categories. This may be sufficient if the goal is to detect and delete abusive language posts. However, removal is not always possible due to the legislation of a country. Also, there is evidence that hate speech cannot be successfully combated by merely removing hate speech posts; they should be countered by education and counter-narratives. For this purpose, we need to identify (i) who is the target in a given hate speech post, and (ii) what aspects (or characteristics) of the target are attributed to the target in the post. As the first approximation, we propose to adapt a generic state-of-the-art concept extraction model to the hate speech domain. The outcome of the experiments is promising and can serve as inspiration for further work on the task\",\"PeriodicalId\":166161,\"journal\":{\"name\":\"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)\",\"volume\":\"741 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.woah-1.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.woah-1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mainstream research on hate speech focused so far predominantly on the task of classifying mainly social media posts with respect to predefined typologies of rather coarse-grained hate speech categories. This may be sufficient if the goal is to detect and delete abusive language posts. However, removal is not always possible due to the legislation of a country. Also, there is evidence that hate speech cannot be successfully combated by merely removing hate speech posts; they should be countered by education and counter-narratives. For this purpose, we need to identify (i) who is the target in a given hate speech post, and (ii) what aspects (or characteristics) of the target are attributed to the target in the post. As the first approximation, we propose to adapt a generic state-of-the-art concept extraction model to the hate speech domain. The outcome of the experiments is promising and can serve as inspiration for further work on the task