{"title":"基于类内低秩约束的深度语义空间跨模态检索","authors":"Peipei Kang, Zehang Lin, Zhenguo Yang, Xiaozhao Fang, Qing Li, Wenyin Liu","doi":"10.1145/3323873.3325029","DOIUrl":null,"url":null,"abstract":"In this paper, a novel Deep Semantic Space learning model with Intra-class Low-rank constraint (DSSIL) is proposed for cross-modal retrieval, which is composed of two subnetworks for modality-specific representation learning, followed by projection layers for common space mapping. In particular, DSSIL takes into account semantic consistency to fuse the cross-modal data in a high-level common space, and constrains the common representation matrix within the same class to be low-rank, in order to induce the intra-class representations more relevant. More formally, two regularization terms are devised for the two aspects, which have been incorporated into the objective of DSSIL. To optimize the modality-specific subnetworks and the projection layers simultaneously by exploiting the gradient decent directly, we approximate the nonconvex low-rank constraint by minimizing a few smallest singular values of the intra-class matrix with theoretical analysis. Extensive experiments conducted on three public datasets demonstrate the competitive superiority of DSSIL for cross-modal retrieval compared with the state-of-the-art methods.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deep Semantic Space with Intra-class Low-rank Constraint for Cross-modal Retrieval\",\"authors\":\"Peipei Kang, Zehang Lin, Zhenguo Yang, Xiaozhao Fang, Qing Li, Wenyin Liu\",\"doi\":\"10.1145/3323873.3325029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel Deep Semantic Space learning model with Intra-class Low-rank constraint (DSSIL) is proposed for cross-modal retrieval, which is composed of two subnetworks for modality-specific representation learning, followed by projection layers for common space mapping. In particular, DSSIL takes into account semantic consistency to fuse the cross-modal data in a high-level common space, and constrains the common representation matrix within the same class to be low-rank, in order to induce the intra-class representations more relevant. More formally, two regularization terms are devised for the two aspects, which have been incorporated into the objective of DSSIL. To optimize the modality-specific subnetworks and the projection layers simultaneously by exploiting the gradient decent directly, we approximate the nonconvex low-rank constraint by minimizing a few smallest singular values of the intra-class matrix with theoretical analysis. Extensive experiments conducted on three public datasets demonstrate the competitive superiority of DSSIL for cross-modal retrieval compared with the state-of-the-art methods.\",\"PeriodicalId\":149041,\"journal\":{\"name\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323873.3325029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Semantic Space with Intra-class Low-rank Constraint for Cross-modal Retrieval
In this paper, a novel Deep Semantic Space learning model with Intra-class Low-rank constraint (DSSIL) is proposed for cross-modal retrieval, which is composed of two subnetworks for modality-specific representation learning, followed by projection layers for common space mapping. In particular, DSSIL takes into account semantic consistency to fuse the cross-modal data in a high-level common space, and constrains the common representation matrix within the same class to be low-rank, in order to induce the intra-class representations more relevant. More formally, two regularization terms are devised for the two aspects, which have been incorporated into the objective of DSSIL. To optimize the modality-specific subnetworks and the projection layers simultaneously by exploiting the gradient decent directly, we approximate the nonconvex low-rank constraint by minimizing a few smallest singular values of the intra-class matrix with theoretical analysis. Extensive experiments conducted on three public datasets demonstrate the competitive superiority of DSSIL for cross-modal retrieval compared with the state-of-the-art methods.