大型混合可再生能源系统氧化还原液流电池单元建模与性能分析

I. K. Amin, Md. Nahid Islam, Azam Jaman, Md. Kabir Hasan, Muslima Akter Bithi, M. Uddin
{"title":"大型混合可再生能源系统氧化还原液流电池单元建模与性能分析","authors":"I. K. Amin, Md. Nahid Islam, Azam Jaman, Md. Kabir Hasan, Muslima Akter Bithi, M. Uddin","doi":"10.1109/IAS54023.2022.9939893","DOIUrl":null,"url":null,"abstract":"As the demand of electric power generation has increased vastly across the world, the requirement of upgraded schemes for efficient power extraction and bulky storage has burgeoned tantamountly. To adopt the randomness and best uti-lization of the renewable energy sources, power profile prediction and energy management of large-scale solar and wind farms are major concerns for grid operators. A bulk efficient energy storage system may eliminate the issues related to unpredictability of sustainable power sources. Mostly conventional deep cycle lead-acid battery banks are utilized to meet massive storage requirement in solar and wind farms. However, the high cost, extensive maintenance, requirement of extra space and relatively short lifetime are the major shortcomings of lead-acid batteries. On the other hand, the development of Vanadium Redox-flow battery (VRFB) makes it possible to be utilized for large-scale storage because of its viable chemical composition, compact energy density and long lifecycle. In this paper, a multiphysics model of a 8 MW-h Vanadium redox-flow battery is developed for large-scale storage. The features of the VRFB have been analyzed for variation of its key parameters. To observe the effectiveness of the proposed model, a 3 MW grid-connected hybrid renewable power system consisting of photovoltaic (PV) panels and wind turbines is simulated with proposed storage unit. The battery framework is designed in COMSOL Multiphysics platform and dynamic simulations are performed in MATLAB/Simulink en-vironment. The results show that the proposed model exhibits compatible performance in managing the energy flow from the hybrid sources towards the load by maintaining the real power demanded by the grid operator.","PeriodicalId":193587,"journal":{"name":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Performance Analysis of Redox-Flow Battery Unit for Large-Scale Hybrid Renewable Energy Systems\",\"authors\":\"I. K. Amin, Md. Nahid Islam, Azam Jaman, Md. Kabir Hasan, Muslima Akter Bithi, M. Uddin\",\"doi\":\"10.1109/IAS54023.2022.9939893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the demand of electric power generation has increased vastly across the world, the requirement of upgraded schemes for efficient power extraction and bulky storage has burgeoned tantamountly. To adopt the randomness and best uti-lization of the renewable energy sources, power profile prediction and energy management of large-scale solar and wind farms are major concerns for grid operators. A bulk efficient energy storage system may eliminate the issues related to unpredictability of sustainable power sources. Mostly conventional deep cycle lead-acid battery banks are utilized to meet massive storage requirement in solar and wind farms. However, the high cost, extensive maintenance, requirement of extra space and relatively short lifetime are the major shortcomings of lead-acid batteries. On the other hand, the development of Vanadium Redox-flow battery (VRFB) makes it possible to be utilized for large-scale storage because of its viable chemical composition, compact energy density and long lifecycle. In this paper, a multiphysics model of a 8 MW-h Vanadium redox-flow battery is developed for large-scale storage. The features of the VRFB have been analyzed for variation of its key parameters. To observe the effectiveness of the proposed model, a 3 MW grid-connected hybrid renewable power system consisting of photovoltaic (PV) panels and wind turbines is simulated with proposed storage unit. The battery framework is designed in COMSOL Multiphysics platform and dynamic simulations are performed in MATLAB/Simulink en-vironment. The results show that the proposed model exhibits compatible performance in managing the energy flow from the hybrid sources towards the load by maintaining the real power demanded by the grid operator.\",\"PeriodicalId\":193587,\"journal\":{\"name\":\"2022 IEEE Industry Applications Society Annual Meeting (IAS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Industry Applications Society Annual Meeting (IAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS54023.2022.9939893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Industry Applications Society Annual Meeting (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS54023.2022.9939893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着世界范围内发电需求的急剧增长,对高效抽电和大容量储能的升级方案的需求也不断增长。为了充分利用可再生能源的随机性和最佳利用率,大型太阳能和风力发电场的电力分布预测和能源管理是电网运营商关注的主要问题。大容量高效储能系统可以消除与可持续能源不可预测性相关的问题。传统的深循环铅酸蓄电池组大多用于满足太阳能和风力发电场的大规模存储需求。然而,铅酸电池的主要缺点是成本高,维护量大,需要额外的空间和相对较短的寿命。另一方面,钒氧化还原液流电池(VRFB)的发展使其具有可行的化学成分、紧凑的能量密度和较长的生命周期,可以用于大规模存储。本文建立了8mw -h钒液流电池的多物理场模型。分析了VRFB的特点,分析了其关键参数的变化。为了观察所提模型的有效性,以一个由光伏板和风力发电机组成的3mw并网混合可再生能源发电系统为例,对所提存储单元进行了仿真。在COMSOL Multiphysics平台上设计了电池框架,并在MATLAB/Simulink环境下进行了动态仿真。结果表明,该模型在保持电网运营商实际用电需求的前提下,在管理混合电源向负荷的能量流方面具有良好的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and Performance Analysis of Redox-Flow Battery Unit for Large-Scale Hybrid Renewable Energy Systems
As the demand of electric power generation has increased vastly across the world, the requirement of upgraded schemes for efficient power extraction and bulky storage has burgeoned tantamountly. To adopt the randomness and best uti-lization of the renewable energy sources, power profile prediction and energy management of large-scale solar and wind farms are major concerns for grid operators. A bulk efficient energy storage system may eliminate the issues related to unpredictability of sustainable power sources. Mostly conventional deep cycle lead-acid battery banks are utilized to meet massive storage requirement in solar and wind farms. However, the high cost, extensive maintenance, requirement of extra space and relatively short lifetime are the major shortcomings of lead-acid batteries. On the other hand, the development of Vanadium Redox-flow battery (VRFB) makes it possible to be utilized for large-scale storage because of its viable chemical composition, compact energy density and long lifecycle. In this paper, a multiphysics model of a 8 MW-h Vanadium redox-flow battery is developed for large-scale storage. The features of the VRFB have been analyzed for variation of its key parameters. To observe the effectiveness of the proposed model, a 3 MW grid-connected hybrid renewable power system consisting of photovoltaic (PV) panels and wind turbines is simulated with proposed storage unit. The battery framework is designed in COMSOL Multiphysics platform and dynamic simulations are performed in MATLAB/Simulink en-vironment. The results show that the proposed model exhibits compatible performance in managing the energy flow from the hybrid sources towards the load by maintaining the real power demanded by the grid operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testing the resistance of conductive gloves for the evaluation of the efficiency of clothing protecting against induced currents Hybrid Machine Learning-based Intelligent Distance Protection and Control Schemes with Fault and Zonal Classification Capabilities for Grid-connected Wind Farms Hardware in the Loop Testing of Main and Backup Protection Scheme for Systems with High Penetration of Inverter-Based Resources Predictive Control of Seven Level Multi-level Inverter Based Single Phase Shunt Active Filter Influence of Ageing on Properties of Insulating Oil in In-Service Transformer and Reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1