基于局部学习策略的动态集成算法研究

Yin Junping, Wan Yuan
{"title":"基于局部学习策略的动态集成算法研究","authors":"Yin Junping, Wan Yuan","doi":"10.1109/GCIS.2012.78","DOIUrl":null,"url":null,"abstract":"Taking local learning strategy as the local member classifier generating means, local performance estimation of classifier as in-depth analysis method of classifier, this paper, systematically investigates dynamic integration method based on local learning strategy and local performance estimation, on the basis of improving the integrated classifier accuracy with efficiency consideration in order to obtain superior performance of the dynamic integration classification algorithm.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Dynamic Integration Algorithm Based on Local Learning Strategy\",\"authors\":\"Yin Junping, Wan Yuan\",\"doi\":\"10.1109/GCIS.2012.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking local learning strategy as the local member classifier generating means, local performance estimation of classifier as in-depth analysis method of classifier, this paper, systematically investigates dynamic integration method based on local learning strategy and local performance estimation, on the basis of improving the integrated classifier accuracy with efficiency consideration in order to obtain superior performance of the dynamic integration classification algorithm.\",\"PeriodicalId\":337629,\"journal\":{\"name\":\"2012 Third Global Congress on Intelligent Systems\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2012.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以局部学习策略作为局部成员分类器的生成手段,以分类器的局部性能估计作为分类器的深度分析方法,系统研究了基于局部学习策略和局部性能估计的动态集成方法,在兼顾效率的基础上提高集成分类器的精度,以获得更优的动态集成分类算法性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Dynamic Integration Algorithm Based on Local Learning Strategy
Taking local learning strategy as the local member classifier generating means, local performance estimation of classifier as in-depth analysis method of classifier, this paper, systematically investigates dynamic integration method based on local learning strategy and local performance estimation, on the basis of improving the integrated classifier accuracy with efficiency consideration in order to obtain superior performance of the dynamic integration classification algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1