剖析Android恶意软件

Anand Tirkey, R. Mohapatra, L. Kumar
{"title":"剖析Android恶意软件","authors":"Anand Tirkey, R. Mohapatra, L. Kumar","doi":"10.1109/APSEC48747.2019.00067","DOIUrl":null,"url":null,"abstract":"Android OS being the popular choice of majority users also faces the constant risk of breach of confidentiality, integrity and availability (CIA). Effective mitigation efforts needs to identified in order to protect and uphold the CIA triad model, within the android ecosystem. In this paper, we propose a novel method of android malware classification using Object-Oriented Software Metrics and machine learning algorithms. First, android apps are decompiled and Object-Oriented Metrics are obtained. VirusTotal service is used to tag an app either as malware or benign. Object-Oriented Metrics and malware tag are clubbed together into a dataset. Eighty different machine-learned models are trained over five thousand seven hundred and seventy four android apps. We evaluate the performance and stability of these models using it's malware classification accuracy and AUC (area under ROC curve) values. Our method yields an accuracy and AUC of 99.83% and 1.0 respectively.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anatomizing Android Malwares\",\"authors\":\"Anand Tirkey, R. Mohapatra, L. Kumar\",\"doi\":\"10.1109/APSEC48747.2019.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android OS being the popular choice of majority users also faces the constant risk of breach of confidentiality, integrity and availability (CIA). Effective mitigation efforts needs to identified in order to protect and uphold the CIA triad model, within the android ecosystem. In this paper, we propose a novel method of android malware classification using Object-Oriented Software Metrics and machine learning algorithms. First, android apps are decompiled and Object-Oriented Metrics are obtained. VirusTotal service is used to tag an app either as malware or benign. Object-Oriented Metrics and malware tag are clubbed together into a dataset. Eighty different machine-learned models are trained over five thousand seven hundred and seventy four android apps. We evaluate the performance and stability of these models using it's malware classification accuracy and AUC (area under ROC curve) values. Our method yields an accuracy and AUC of 99.83% and 1.0 respectively.\",\"PeriodicalId\":325642,\"journal\":{\"name\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC48747.2019.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Android操作系统作为大多数用户的流行选择,也面临着违反机密性、完整性和可用性(CIA)的持续风险。需要确定有效的缓解措施,以便在机器人生态系统中保护和维护中央情报局的三位一体模式。本文提出了一种基于面向对象软件度量和机器学习算法的android恶意软件分类新方法。首先,对android应用程序进行反编译,获得面向对象的度量。VirusTotal服务用于标记应用程序为恶意软件或良性。面向对象的度量和恶意软件标签被组合成一个数据集。八十个不同的机器学习模型在五千七百七十四个安卓应用程序上进行了训练。我们用它的恶意软件分类精度和AUC (ROC曲线下面积)值来评估这些模型的性能和稳定性。该方法的准确度和AUC分别为99.83%和1.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anatomizing Android Malwares
Android OS being the popular choice of majority users also faces the constant risk of breach of confidentiality, integrity and availability (CIA). Effective mitigation efforts needs to identified in order to protect and uphold the CIA triad model, within the android ecosystem. In this paper, we propose a novel method of android malware classification using Object-Oriented Software Metrics and machine learning algorithms. First, android apps are decompiled and Object-Oriented Metrics are obtained. VirusTotal service is used to tag an app either as malware or benign. Object-Oriented Metrics and malware tag are clubbed together into a dataset. Eighty different machine-learned models are trained over five thousand seven hundred and seventy four android apps. We evaluate the performance and stability of these models using it's malware classification accuracy and AUC (area under ROC curve) values. Our method yields an accuracy and AUC of 99.83% and 1.0 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Duplicate Questions in Stack Overflow via Deep Learning Approaches An Algebraic Approach to Modeling and Verifying Policy-Driven Smart Devices in IoT Systems Integrating Static Program Analysis Tools for Verifying Cautions of Microcontroller How Compact Will My System Be? A Fully-Automated Way to Calculate LoC Reduced by Clone Refactoring Neural Comment Generation for Source Code with Auxiliary Code Classification Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1