Ryan Silva, Cameron Hickert, Nicolas Sarfaraz, Jeff Brush, Joshua Silbermann, Tamim I. Sookoor
{"title":"基于强化学习的网络物理系统网络安全自动化","authors":"Ryan Silva, Cameron Hickert, Nicolas Sarfaraz, Jeff Brush, Joshua Silbermann, Tamim I. Sookoor","doi":"10.1109/iccps54341.2022.00036","DOIUrl":null,"url":null,"abstract":"Achieving agile and resilient autonomous capabilities for cyber defense requires moving past indicators and situational awareness into automated response and recovery capabilities. The objective of the AlphaSOC project is to use state of the art sequential decision-making methods to automatically investigate and mitigate attacks on cyber physical systems (CPS). To demonstrate this, we developed a simulation environment that models the distributed navigation control system and physics of a large ship with two rudders and thrusters for propulsion. Defending this control network requires processing large volumes of cyber and physical signals to coordi-nate defensive actions over many devices with minimal disruption to nominal operation. We are developing a Reinforcement Learning (RL)-based approach to solve the resulting sequential decision-making problem that has large observation and action spaces.","PeriodicalId":340078,"journal":{"name":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AlphaSOC: Reinforcement Learning-based Cybersecurity Automation for Cyber-Physical Systems\",\"authors\":\"Ryan Silva, Cameron Hickert, Nicolas Sarfaraz, Jeff Brush, Joshua Silbermann, Tamim I. Sookoor\",\"doi\":\"10.1109/iccps54341.2022.00036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving agile and resilient autonomous capabilities for cyber defense requires moving past indicators and situational awareness into automated response and recovery capabilities. The objective of the AlphaSOC project is to use state of the art sequential decision-making methods to automatically investigate and mitigate attacks on cyber physical systems (CPS). To demonstrate this, we developed a simulation environment that models the distributed navigation control system and physics of a large ship with two rudders and thrusters for propulsion. Defending this control network requires processing large volumes of cyber and physical signals to coordi-nate defensive actions over many devices with minimal disruption to nominal operation. We are developing a Reinforcement Learning (RL)-based approach to solve the resulting sequential decision-making problem that has large observation and action spaces.\",\"PeriodicalId\":340078,\"journal\":{\"name\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccps54341.2022.00036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccps54341.2022.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AlphaSOC: Reinforcement Learning-based Cybersecurity Automation for Cyber-Physical Systems
Achieving agile and resilient autonomous capabilities for cyber defense requires moving past indicators and situational awareness into automated response and recovery capabilities. The objective of the AlphaSOC project is to use state of the art sequential decision-making methods to automatically investigate and mitigate attacks on cyber physical systems (CPS). To demonstrate this, we developed a simulation environment that models the distributed navigation control system and physics of a large ship with two rudders and thrusters for propulsion. Defending this control network requires processing large volumes of cyber and physical signals to coordi-nate defensive actions over many devices with minimal disruption to nominal operation. We are developing a Reinforcement Learning (RL)-based approach to solve the resulting sequential decision-making problem that has large observation and action spaces.