基于GPU加速模糊c均值分割的微结构图像多相识别

D. Onchis, D. Frunzaverde, Mihail Gaianu, Relu Ciubotariu
{"title":"基于GPU加速模糊c均值分割的微结构图像多相识别","authors":"D. Onchis, D. Frunzaverde, Mihail Gaianu, Relu Ciubotariu","doi":"10.1109/SYNASC.2014.86","DOIUrl":null,"url":null,"abstract":"This paper presents an effective algorithm for the identification of multiple phases in microstructures images. The procedure is based on an efficient image segmentation using the fuzzy c-means algorithm. Furthermore, the algorithm is accelerated on a GPU cluster in order to obtain optimal computing times for large size images. The results are compared on the same experimental images with the ones obtained from a commercial software and the accuracy of the proposed algorithm is demonstrated.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-phase Identification in Microstructures Images Using a GPU Accelerated Fuzzy C-Means Segmentation\",\"authors\":\"D. Onchis, D. Frunzaverde, Mihail Gaianu, Relu Ciubotariu\",\"doi\":\"10.1109/SYNASC.2014.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an effective algorithm for the identification of multiple phases in microstructures images. The procedure is based on an efficient image segmentation using the fuzzy c-means algorithm. Furthermore, the algorithm is accelerated on a GPU cluster in order to obtain optimal computing times for large size images. The results are compared on the same experimental images with the ones obtained from a commercial software and the accuracy of the proposed algorithm is demonstrated.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种有效的显微结构图像多相识别算法。该程序是基于一个有效的图像分割使用模糊c均值算法。此外,为了获得大尺寸图像的最佳计算时间,算法在GPU集群上进行了加速。在相同的实验图像上与商业软件得到的结果进行了比较,验证了算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-phase Identification in Microstructures Images Using a GPU Accelerated Fuzzy C-Means Segmentation
This paper presents an effective algorithm for the identification of multiple phases in microstructures images. The procedure is based on an efficient image segmentation using the fuzzy c-means algorithm. Furthermore, the algorithm is accelerated on a GPU cluster in order to obtain optimal computing times for large size images. The results are compared on the same experimental images with the ones obtained from a commercial software and the accuracy of the proposed algorithm is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Weighted Round Robin Load Balancing for Cloud Web Services Lipschitz Bounds for Noise Robustness in Compressive Sensing: Two Algorithms Open and Interoperable Socio-technical Networks Computing Homological Information Based on Directed Graphs within Discrete Objects Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1