关于你最喜欢的数据的个人故事

C. Labbé, C. Roncancio, D. Bras
{"title":"关于你最喜欢的数据的个人故事","authors":"C. Labbé, C. Roncancio, D. Bras","doi":"10.18653/v1/W15-4727","DOIUrl":null,"url":null,"abstract":"A controlled use of omnipresent data can leverage a potential of services never reached before. In this paper, we propose a user driven approach to take advantage of massive data streams. Our solution, named Stream2Text, relies on a personalized and continuous refinement of data to generate texts (in natural language) that provide a tailored synthesis of relevant data. It enables monitoring by a wide range of users as text streams can be shared on social networks or used individually on mobile devices.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Personal Storytelling about Your Favorite Data\",\"authors\":\"C. Labbé, C. Roncancio, D. Bras\",\"doi\":\"10.18653/v1/W15-4727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A controlled use of omnipresent data can leverage a potential of services never reached before. In this paper, we propose a user driven approach to take advantage of massive data streams. Our solution, named Stream2Text, relies on a personalized and continuous refinement of data to generate texts (in natural language) that provide a tailored synthesis of relevant data. It enables monitoring by a wide range of users as text streams can be shared on social networks or used individually on mobile devices.\",\"PeriodicalId\":307841,\"journal\":{\"name\":\"European Workshop on Natural Language Generation\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Natural Language Generation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W15-4727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W15-4727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

有控制地使用无所不在的数据可以利用以前从未达到的潜在服务。在本文中,我们提出了一种用户驱动的方法来利用海量数据流。我们的解决方案,名为Stream2Text,依赖于数据的个性化和持续的细化来生成文本(以自然语言),这些文本提供了相关数据的定制综合。它允许广泛的用户进行监控,因为文本流可以在社交网络上共享,也可以在移动设备上单独使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Personal Storytelling about Your Favorite Data
A controlled use of omnipresent data can leverage a potential of services never reached before. In this paper, we propose a user driven approach to take advantage of massive data streams. Our solution, named Stream2Text, relies on a personalized and continuous refinement of data to generate texts (in natural language) that provide a tailored synthesis of relevant data. It enables monitoring by a wide range of users as text streams can be shared on social networks or used individually on mobile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural Language Generation from Pictographs A Personal Storytelling about Your Favorite Data Topic Transition Strategies for an Information-Giving Agent Sentence Ordering in Electronic Navigational Chart Companion Text Generation Generating Récit from Sensor Data: Evaluation of a Task Model for Story Planning and Preliminary Experiments with GPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1