一种基于项目协同过滤和基于案例推理的智能知识共享策略

Zeina Chedrawy, S. Abidi
{"title":"一种基于项目协同过滤和基于案例推理的智能知识共享策略","authors":"Zeina Chedrawy, S. Abidi","doi":"10.1109/ISDA.2005.22","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for combining item-based collaborative filtering (CF) with case based reasoning (CBR) to pursue personalized information filtering in a knowledge sharing context. Functionally, our personalized information filtering approach allows the use of recommendations by peers with similar interests and domain experts to guide the selection of information deemed relevant to an active user's profile. We apply item-based similarity computation in a CF framework to retrieve N information objects based on the user's interests and recommended by peer. The N information objects are then subjected to a CBR based compositional adaptation method to further select relevant information objects from the N retrieved past cases in order to generate a more fine-grained recommendation.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An intelligent knowledge sharing strategy featuring item-based collaborative filtering and case based reasoning\",\"authors\":\"Zeina Chedrawy, S. Abidi\",\"doi\":\"10.1109/ISDA.2005.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approach for combining item-based collaborative filtering (CF) with case based reasoning (CBR) to pursue personalized information filtering in a knowledge sharing context. Functionally, our personalized information filtering approach allows the use of recommendations by peers with similar interests and domain experts to guide the selection of information deemed relevant to an active user's profile. We apply item-based similarity computation in a CF framework to retrieve N information objects based on the user's interests and recommended by peer. The N information objects are then subjected to a CBR based compositional adaptation method to further select relevant information objects from the N retrieved past cases in order to generate a more fine-grained recommendation.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种将基于项目的协同过滤(CF)与基于案例的推理(CBR)相结合的方法来实现知识共享环境下的个性化信息过滤。从功能上讲,我们的个性化信息过滤方法允许使用具有相似兴趣的同行和领域专家的推荐来指导选择与活跃用户的个人资料相关的信息。我们在CF框架中应用基于项目的相似性计算,根据用户的兴趣和同伴推荐检索N个信息对象。然后使用基于CBR的组合适应方法,从检索到的N个过去案例中进一步选择相关的信息对象,以生成更细粒度的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An intelligent knowledge sharing strategy featuring item-based collaborative filtering and case based reasoning
In this paper, we propose a new approach for combining item-based collaborative filtering (CF) with case based reasoning (CBR) to pursue personalized information filtering in a knowledge sharing context. Functionally, our personalized information filtering approach allows the use of recommendations by peers with similar interests and domain experts to guide the selection of information deemed relevant to an active user's profile. We apply item-based similarity computation in a CF framework to retrieve N information objects based on the user's interests and recommended by peer. The N information objects are then subjected to a CBR based compositional adaptation method to further select relevant information objects from the N retrieved past cases in order to generate a more fine-grained recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed service-oriented architecture for information extraction system "Semanta" HAUNT-24: 24-bit hierarchical, application-confined unique naming technique The verification's criterion of learning algorithm New evolutionary approach to the GCP: a premature convergence and an evolution process character A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1