一种光学重构加速优化方法

Minoru Watanabe, N. Yamaguchi
{"title":"一种光学重构加速优化方法","authors":"Minoru Watanabe, N. Yamaguchi","doi":"10.1109/VLSI.2008.26","DOIUrl":null,"url":null,"abstract":"Optically reconfigurable gate arrays (ORGAs), by exploiting the large storage capacity of holographic memory, offer the possibility of providing a virtual gate count that is much larger than those of currently available VLSI circuits. Because circuits implemented on a gate array must often be changed using virtual circuits stored in a holographic memory, rapid reconfiguration is necessary to reduce the reconfiguration overhead. A simple means to realize a short reconfiguration time in ORGAs is to implement a high-power laser array. However, such an array presents the disadvantages of high power consumption, large implementation space, high cost, and so on. Therefore, this paper presents an acceleration method to increase ORGAs' reconfiguration frequency without the necessity for any increase of laser power. This technique also includes optimization between the number of reconfiguration contexts and the reconfiguration frequency. The description in this paper clarifies the advantages using simulation and experimental results.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Acceleration and Optimization Method for Optical Reconfiguration\",\"authors\":\"Minoru Watanabe, N. Yamaguchi\",\"doi\":\"10.1109/VLSI.2008.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optically reconfigurable gate arrays (ORGAs), by exploiting the large storage capacity of holographic memory, offer the possibility of providing a virtual gate count that is much larger than those of currently available VLSI circuits. Because circuits implemented on a gate array must often be changed using virtual circuits stored in a holographic memory, rapid reconfiguration is necessary to reduce the reconfiguration overhead. A simple means to realize a short reconfiguration time in ORGAs is to implement a high-power laser array. However, such an array presents the disadvantages of high power consumption, large implementation space, high cost, and so on. Therefore, this paper presents an acceleration method to increase ORGAs' reconfiguration frequency without the necessity for any increase of laser power. This technique also includes optimization between the number of reconfiguration contexts and the reconfiguration frequency. The description in this paper clarifies the advantages using simulation and experimental results.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光学可重构门阵列(ORGAs)通过利用全息存储器的大存储容量,提供了提供比当前可用的VLSI电路大得多的虚拟门计数的可能性。由于在门阵列上实现的电路必须经常使用存储在全息存储器中的虚拟电路进行更改,因此必须快速重新配置以减少重新配置开销。实现orga中短重构时间的一种简单方法是实现高功率激光阵列。但是,这种阵列存在功耗高、实现空间大、成本高等缺点。因此,本文提出了一种在不增加激光功率的情况下提高orga重构频率的加速方法。该技术还包括重新配置上下文的数量和重新配置频率之间的优化。本文通过仿真和实验结果说明了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Acceleration and Optimization Method for Optical Reconfiguration
Optically reconfigurable gate arrays (ORGAs), by exploiting the large storage capacity of holographic memory, offer the possibility of providing a virtual gate count that is much larger than those of currently available VLSI circuits. Because circuits implemented on a gate array must often be changed using virtual circuits stored in a holographic memory, rapid reconfiguration is necessary to reduce the reconfiguration overhead. A simple means to realize a short reconfiguration time in ORGAs is to implement a high-power laser array. However, such an array presents the disadvantages of high power consumption, large implementation space, high cost, and so on. Therefore, this paper presents an acceleration method to increase ORGAs' reconfiguration frequency without the necessity for any increase of laser power. This technique also includes optimization between the number of reconfiguration contexts and the reconfiguration frequency. The description in this paper clarifies the advantages using simulation and experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Design and Advanced Semiconductor Technology A Robust Architecture for Flip-Flops Tolerant to Soft-Errors and Transients from Combinational Circuits IEEE Market-Oriented Standards Process and the EDA Industry Concurrent Multi-Dimensional Adaptation for Low-Power Operation in Wireless Devices MoCSYS: A Multi-Clock Hybrid Two-Layer Router Architecture and Integrated Topology Synthesis Framework for System-Level Design of FPGA Based On-Chip Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1