稳态电压伏安函数分级控制的通信要求

J. Quiroz, M. Reno, O. Lavrova, R. Byrne
{"title":"稳态电压伏安函数分级控制的通信要求","authors":"J. Quiroz, M. Reno, O. Lavrova, R. Byrne","doi":"10.1109/ISGT.2017.8086007","DOIUrl":null,"url":null,"abstract":"A hierarchical control algorithm was developed to utilize photovoltaic system advanced inverter volt-VAr functions to provide distribution system voltage regulation and to mitigate 10-minute average voltages outside of ANSI Range A (0.95–1.05 pu). As with any hierarchical control strategy, the success of the control requires a sufficiently fast and reliable communication infrastructure. The communication requirements for voltage regulation were tested by varying the interval at which the controller monitors and dispatches commands and evaluating the effectiveness to mitigate distribution system over-voltages. The control strategy was demonstrated to perform well for communication intervals equal to the 10-minute ANSI metric definition or faster. The communication reliability impacted the controller performance at levels of 99% and below, depending on the communication interval, where an 8-minute communication interval could be unsuccessful with an 80% reliability. The communication delay, up to 20 seconds, was too small to have an impact on the effectiveness of the communication-based hierarchical voltage control.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Communication requirements for hierarchical control of volt-VAr function for steady-state voltage\",\"authors\":\"J. Quiroz, M. Reno, O. Lavrova, R. Byrne\",\"doi\":\"10.1109/ISGT.2017.8086007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hierarchical control algorithm was developed to utilize photovoltaic system advanced inverter volt-VAr functions to provide distribution system voltage regulation and to mitigate 10-minute average voltages outside of ANSI Range A (0.95–1.05 pu). As with any hierarchical control strategy, the success of the control requires a sufficiently fast and reliable communication infrastructure. The communication requirements for voltage regulation were tested by varying the interval at which the controller monitors and dispatches commands and evaluating the effectiveness to mitigate distribution system over-voltages. The control strategy was demonstrated to perform well for communication intervals equal to the 10-minute ANSI metric definition or faster. The communication reliability impacted the controller performance at levels of 99% and below, depending on the communication interval, where an 8-minute communication interval could be unsuccessful with an 80% reliability. The communication delay, up to 20 seconds, was too small to have an impact on the effectiveness of the communication-based hierarchical voltage control.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

开发了一种分层控制算法,利用光伏系统先进的逆变器电压- var功能来提供配电系统电压调节,并减轻超出ANSI范围A (0.95-1.05 pu)的10分钟平均电压。与任何分层控制策略一样,控制的成功需要足够快速和可靠的通信基础设施。通过改变控制器监控和调度命令的间隔,测试了电压调节的通信要求,并评估了缓解配电系统过电压的有效性。控制策略被证明在等于10分钟ANSI度量定义或更快的通信间隔中表现良好。通信可靠性对控制器性能的影响在99%及以下,具体取决于通信间隔,其中8分钟的通信间隔可能在80%的可靠性下不成功。通信延迟(最多20秒)太小,不会影响基于通信的分层电压控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Communication requirements for hierarchical control of volt-VAr function for steady-state voltage
A hierarchical control algorithm was developed to utilize photovoltaic system advanced inverter volt-VAr functions to provide distribution system voltage regulation and to mitigate 10-minute average voltages outside of ANSI Range A (0.95–1.05 pu). As with any hierarchical control strategy, the success of the control requires a sufficiently fast and reliable communication infrastructure. The communication requirements for voltage regulation were tested by varying the interval at which the controller monitors and dispatches commands and evaluating the effectiveness to mitigate distribution system over-voltages. The control strategy was demonstrated to perform well for communication intervals equal to the 10-minute ANSI metric definition or faster. The communication reliability impacted the controller performance at levels of 99% and below, depending on the communication interval, where an 8-minute communication interval could be unsuccessful with an 80% reliability. The communication delay, up to 20 seconds, was too small to have an impact on the effectiveness of the communication-based hierarchical voltage control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cyber-physical resilience metric for smart grids Optimal allocation of photovoltaic systems and energy storage systems considering constraints of both transmission and distribution systems Stochastic dynamic power flow analysis based on stochastic response surfarce method and ARMA-GARCH model Towards the improvement of multi-objective evolutionary algorithms for service restoration Multi-level control framework for enhanced flexibility of active distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1