基于内容的双树复小波变换图像检索

Stella Vetova, Ivan Ivanov
{"title":"基于内容的双树复小波变换图像检索","authors":"Stella Vetova, Ivan Ivanov","doi":"10.1109/MCSI.2014.51","DOIUrl":null,"url":null,"abstract":"The following paper presents a novel and effective algorithm for Content-Based Image Retrieval. To design it we used the Dual-Tree Complex Wavelet Transform for image feature extraction and Hausdorff distance to compute similarity distance between the feature vector of the query-image and all the image feature vectors stored in the image database. Then, we performed experiments to estimate the effectiveness of the proposed algorithm which showed high values of precision.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Content -- Based Image Retrieval Using the Dual-Tree Complex Wavelet Transform\",\"authors\":\"Stella Vetova, Ivan Ivanov\",\"doi\":\"10.1109/MCSI.2014.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following paper presents a novel and effective algorithm for Content-Based Image Retrieval. To design it we used the Dual-Tree Complex Wavelet Transform for image feature extraction and Hausdorff distance to compute similarity distance between the feature vector of the query-image and all the image feature vectors stored in the image database. Then, we performed experiments to estimate the effectiveness of the proposed algorithm which showed high values of precision.\",\"PeriodicalId\":202841,\"journal\":{\"name\":\"2014 International Conference on Mathematics and Computers in Sciences and in Industry\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Mathematics and Computers in Sciences and in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSI.2014.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的基于内容的图像检索算法。在设计中,我们使用双树复小波变换进行图像特征提取,并使用Hausdorff距离计算查询图像的特征向量与图像数据库中存储的所有图像特征向量之间的相似距离。通过实验验证了该算法的有效性,得到了较高的精度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content -- Based Image Retrieval Using the Dual-Tree Complex Wavelet Transform
The following paper presents a novel and effective algorithm for Content-Based Image Retrieval. To design it we used the Dual-Tree Complex Wavelet Transform for image feature extraction and Hausdorff distance to compute similarity distance between the feature vector of the query-image and all the image feature vectors stored in the image database. Then, we performed experiments to estimate the effectiveness of the proposed algorithm which showed high values of precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dirichlet Boundary Stabilization of Unstable Mixed Parameter Systems Skin Color Analysis and Segmentation in Complex Outdoor Background Application of the Static and Dynamic Models in Predicting the Future Strength of Portland Cements A New Graphical Password Based on Decoy Image Portions (GP-DIP) True Random Number Generation of very High Goodness-of-Fit and Randomness Qualities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1