VMGuard:用于管理虚拟机的完整性监控系统

Haifeng Fang, Yiqiang Zhao, Hongyong Zang, H. H. Huang, Ying Song, Yuzhong Sun, Zhiyong Liu
{"title":"VMGuard:用于管理虚拟机的完整性监控系统","authors":"Haifeng Fang, Yiqiang Zhao, Hongyong Zang, H. H. Huang, Ying Song, Yuzhong Sun, Zhiyong Liu","doi":"10.1109/ICPADS.2010.44","DOIUrl":null,"url":null,"abstract":"A cloud computing provider can dynamically allocate virtual machines (VM) based on the needs of the customers, while maintaining the privileged access to the Management Virtual Machine that directly manages the hardware and supports the guest VMs. The customers must trust the cloud providers to protect the confidentiality and integrity of their applications and data. However, as the VMs from different customers are running on the same host, an attack to the management virtual machine will easily lead to the compromise of the guest VMs. Therefore, it is critical for a cloud computing system to ensure the trustworthiness of management VMs. To this end, we propose VMGuard, an integrity monitoring and detecting system for management virtual machines in a distributed environment. VMGuard utilizes a special VM, Guard Domain, which runs on each physical node to monitor the co-resident management VMs. The integrity measurements collected by the Guard Domains are sent to the VMGuard server for safe store and independent analysis. The experimental evaluation of a Xen-based prototype shows that VMGuard can quickly detect the root kit attacks while the performance overhead is low.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"VMGuard: An Integrity Monitoring System for Management Virtual Machines\",\"authors\":\"Haifeng Fang, Yiqiang Zhao, Hongyong Zang, H. H. Huang, Ying Song, Yuzhong Sun, Zhiyong Liu\",\"doi\":\"10.1109/ICPADS.2010.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cloud computing provider can dynamically allocate virtual machines (VM) based on the needs of the customers, while maintaining the privileged access to the Management Virtual Machine that directly manages the hardware and supports the guest VMs. The customers must trust the cloud providers to protect the confidentiality and integrity of their applications and data. However, as the VMs from different customers are running on the same host, an attack to the management virtual machine will easily lead to the compromise of the guest VMs. Therefore, it is critical for a cloud computing system to ensure the trustworthiness of management VMs. To this end, we propose VMGuard, an integrity monitoring and detecting system for management virtual machines in a distributed environment. VMGuard utilizes a special VM, Guard Domain, which runs on each physical node to monitor the co-resident management VMs. The integrity measurements collected by the Guard Domains are sent to the VMGuard server for safe store and independent analysis. The experimental evaluation of a Xen-based prototype shows that VMGuard can quickly detect the root kit attacks while the performance overhead is low.\",\"PeriodicalId\":365914,\"journal\":{\"name\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2010.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

云计算提供商可以根据客户的需求动态分配虚拟机(VM),同时保持对直接管理硬件并支持来宾虚拟机的管理虚拟机的特权访问。客户必须信任云提供商能够保护其应用程序和数据的机密性和完整性。但是,由于来自不同客户的虚拟机运行在同一台主机上,因此对管理虚拟机的攻击很容易导致客户虚拟机的入侵。因此,保证管理虚拟机的可信性对云计算系统至关重要。为此,我们提出了一种用于分布式环境下管理虚拟机的完整性监控和检测系统VMGuard。VMGuard使用一个特殊的虚拟机Guard Domain,它运行在每个物理节点上,监控共同驻留的管理虚拟机。Guard domain收集的完整性测量数据被发送到VMGuard服务器进行安全存储和独立分析。基于xen的原型机的实验评估表明,VMGuard可以快速检测到根工具包攻击,且性能开销低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VMGuard: An Integrity Monitoring System for Management Virtual Machines
A cloud computing provider can dynamically allocate virtual machines (VM) based on the needs of the customers, while maintaining the privileged access to the Management Virtual Machine that directly manages the hardware and supports the guest VMs. The customers must trust the cloud providers to protect the confidentiality and integrity of their applications and data. However, as the VMs from different customers are running on the same host, an attack to the management virtual machine will easily lead to the compromise of the guest VMs. Therefore, it is critical for a cloud computing system to ensure the trustworthiness of management VMs. To this end, we propose VMGuard, an integrity monitoring and detecting system for management virtual machines in a distributed environment. VMGuard utilizes a special VM, Guard Domain, which runs on each physical node to monitor the co-resident management VMs. The integrity measurements collected by the Guard Domains are sent to the VMGuard server for safe store and independent analysis. The experimental evaluation of a Xen-based prototype shows that VMGuard can quickly detect the root kit attacks while the performance overhead is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed-Parallel Implementations of Extrapolation Methods with Reduced Synchronization Overhead for Large Shared-Memory Computers Kumoi: A High-Level Scripting Environment for Collective Virtual Machines A Pervasive Simplified Method for Human Movement Pattern Assessing Broadcasting Algorithm Via Shortest Paths Detection of a Weak Conjunction of Unstable Predicates in Dynamic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1