DEPO

Aisha Syed, Bilal Anwer, V. Gopalakrishnan, Jacobus Van Der Merwe
{"title":"DEPO","authors":"Aisha Syed, Bilal Anwer, V. Gopalakrishnan, Jacobus Van Der Merwe","doi":"10.1145/3314148.3314358","DOIUrl":null,"url":null,"abstract":"The emergence of network functions virtualization (NFV) and software defined networking (SDN) has resulted in networks being realized as software defined infrastructures (SDIs). The dynamicity and flexibility o ered by SDIs introduces new challenges in ensuring that policy changes do not result in unintended consequences. These can range from the breakdown of basic network invariants to degradation of network performance. We present the D framework that enables automated discovery and quantification of the potential impact of new orchestration and service level SDI policies. Our approach uses a combination of knowledge modeling, data analysis, machine learning, and emulation techniques in a sandbox SDI. We demonstrate our approach by evaluating it over a testbed SDI with a 4G LTE/EPC broadband service.","PeriodicalId":346870,"journal":{"name":"Proceedings of the 2019 ACM Symposium on SDN Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DEPO\",\"authors\":\"Aisha Syed, Bilal Anwer, V. Gopalakrishnan, Jacobus Van Der Merwe\",\"doi\":\"10.1145/3314148.3314358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of network functions virtualization (NFV) and software defined networking (SDN) has resulted in networks being realized as software defined infrastructures (SDIs). The dynamicity and flexibility o ered by SDIs introduces new challenges in ensuring that policy changes do not result in unintended consequences. These can range from the breakdown of basic network invariants to degradation of network performance. We present the D framework that enables automated discovery and quantification of the potential impact of new orchestration and service level SDI policies. Our approach uses a combination of knowledge modeling, data analysis, machine learning, and emulation techniques in a sandbox SDI. We demonstrate our approach by evaluating it over a testbed SDI with a 4G LTE/EPC broadband service.\",\"PeriodicalId\":346870,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Symposium on SDN Research\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Symposium on SDN Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314148.3314358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on SDN Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314148.3314358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

网络功能虚拟化(NFV)和软件定义网络(SDN)的出现使得网络被实现为软件定义基础设施(sdi)。sdi提供的动态性和灵活性为确保政策变化不会导致意想不到的后果带来了新的挑战。这些问题的范围从基本网络不变量的破坏到网络性能的降低。我们提出了D框架,它支持自动发现和量化新的编排和服务级别SDI策略的潜在影响。我们的方法在沙箱SDI中结合了知识建模、数据分析、机器学习和仿真技术。我们通过在带有4G LTE/EPC宽带服务的SDI测试平台上对其进行评估来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEPO
The emergence of network functions virtualization (NFV) and software defined networking (SDN) has resulted in networks being realized as software defined infrastructures (SDIs). The dynamicity and flexibility o ered by SDIs introduces new challenges in ensuring that policy changes do not result in unintended consequences. These can range from the breakdown of basic network invariants to degradation of network performance. We present the D framework that enables automated discovery and quantification of the potential impact of new orchestration and service level SDI policies. Our approach uses a combination of knowledge modeling, data analysis, machine learning, and emulation techniques in a sandbox SDI. We demonstrate our approach by evaluating it over a testbed SDI with a 4G LTE/EPC broadband service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MMLite: A Scalable and Resource Efficient Control Plane for Next Generation Cellular Packet Core OpenTD Precise Time-synchronization in the Data-Plane using Programmable Switching ASICs P4TrafficTool Identifying Equivalent SDN Forwarding Behaviour
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1