{"title":"多处理机系统的分布式概率故障诊断","authors":"P. Berman, A. Pelc","doi":"10.1109/FTCS.1990.89383","DOIUrl":null,"url":null,"abstract":"A class of n-unit multiprocessor systems with O(n log n) interconnecting links is constructed, and a distributed probabilistic fault diagnosis algorithm whose probability of correctness converges to 1 as n to infinity is proposed. For small probability of unit failure, a distributed diagnosis whose probability also converges to 1 as the size of the system grows is proposed for the hypercube. On the other hand, it is proved that if a class of systems has fewer than kn log n links for a small constant k, the probability of correctness of every fault diagnosis converges to 0 as n to infinity . By combining the probabilistic and the distributed approach the authors' model of fault diagnosis removes the major drawbacks of the PMC (Preparata-Metze-Chien) model: the assumption of tests with complete fault coverage and the assumption of a fault-free central monitoring unit capable of performing diagnosis.<<ETX>>","PeriodicalId":174189,"journal":{"name":"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium","volume":"506 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Distributed probabilistic fault diagnosis for multiprocessor systems\",\"authors\":\"P. Berman, A. Pelc\",\"doi\":\"10.1109/FTCS.1990.89383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of n-unit multiprocessor systems with O(n log n) interconnecting links is constructed, and a distributed probabilistic fault diagnosis algorithm whose probability of correctness converges to 1 as n to infinity is proposed. For small probability of unit failure, a distributed diagnosis whose probability also converges to 1 as the size of the system grows is proposed for the hypercube. On the other hand, it is proved that if a class of systems has fewer than kn log n links for a small constant k, the probability of correctness of every fault diagnosis converges to 0 as n to infinity . By combining the probabilistic and the distributed approach the authors' model of fault diagnosis removes the major drawbacks of the PMC (Preparata-Metze-Chien) model: the assumption of tests with complete fault coverage and the assumption of a fault-free central monitoring unit capable of performing diagnosis.<<ETX>>\",\"PeriodicalId\":174189,\"journal\":{\"name\":\"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium\",\"volume\":\"506 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1990.89383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1990.89383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed probabilistic fault diagnosis for multiprocessor systems
A class of n-unit multiprocessor systems with O(n log n) interconnecting links is constructed, and a distributed probabilistic fault diagnosis algorithm whose probability of correctness converges to 1 as n to infinity is proposed. For small probability of unit failure, a distributed diagnosis whose probability also converges to 1 as the size of the system grows is proposed for the hypercube. On the other hand, it is proved that if a class of systems has fewer than kn log n links for a small constant k, the probability of correctness of every fault diagnosis converges to 0 as n to infinity . By combining the probabilistic and the distributed approach the authors' model of fault diagnosis removes the major drawbacks of the PMC (Preparata-Metze-Chien) model: the assumption of tests with complete fault coverage and the assumption of a fault-free central monitoring unit capable of performing diagnosis.<>