远程直接内存访问操作的应用程序级重新排序

W. Lavrijsen, Costin Iancu
{"title":"远程直接内存访问操作的应用程序级重新排序","authors":"W. Lavrijsen, Costin Iancu","doi":"10.1109/IPDPS.2017.98","DOIUrl":null,"url":null,"abstract":"We present methods for the effective application level reordering of non-blocking RDMA operations. We supplement out-of-order hardware delivery mechanisms with heuristics to account for the CPU side overhead of communication and for differences in network latency: a runtime scheduler takes into account message sizes, destination and concurrency and reorders operations to improve overall communication throughput. Results are validated on InfiniBand and Cray Aries networks, for SPMD and hybrid (SPMD+OpenMP) programming models. We show up to 5! potential speedup, with 30-50% more typical, for synthetic message patterns in microbenchmarks. We also obtain up to 33% improvement in the communication stages in application settings. While the design space is complex, the resulting scheduler is simple, both internally and at the application level interfaces. It also provides performance portability across networks and programming models. We believe these techniques can be easily retrofitted within any application or runtime framework that uses one-sided communication, e.g. using GASNet, MPI 3.0 RMA or low level APIs such as IBVerbs.","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application Level Reordering of Remote Direct Memory Access Operations\",\"authors\":\"W. Lavrijsen, Costin Iancu\",\"doi\":\"10.1109/IPDPS.2017.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present methods for the effective application level reordering of non-blocking RDMA operations. We supplement out-of-order hardware delivery mechanisms with heuristics to account for the CPU side overhead of communication and for differences in network latency: a runtime scheduler takes into account message sizes, destination and concurrency and reorders operations to improve overall communication throughput. Results are validated on InfiniBand and Cray Aries networks, for SPMD and hybrid (SPMD+OpenMP) programming models. We show up to 5! potential speedup, with 30-50% more typical, for synthetic message patterns in microbenchmarks. We also obtain up to 33% improvement in the communication stages in application settings. While the design space is complex, the resulting scheduler is simple, both internally and at the application level interfaces. It also provides performance portability across networks and programming models. We believe these techniques can be easily retrofitted within any application or runtime framework that uses one-sided communication, e.g. using GASNet, MPI 3.0 RMA or low level APIs such as IBVerbs.\",\"PeriodicalId\":209524,\"journal\":{\"name\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2017.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了对非阻塞RDMA操作进行有效的应用层重排序的方法。我们用启发式方法补充无序硬件交付机制,以考虑通信的CPU端开销和网络延迟的差异:运行时调度器考虑消息大小、目的地和并发性,并重新排序操作以提高总体通信吞吐量。结果在InfiniBand和Cray Aries网络上进行了验证,用于SPMD和混合(SPMD+OpenMP)编程模型。我们出现了5个!微基准测试中合成消息模式的潜在加速,通常为30-50%。我们还在应用程序设置的通信阶段获得了高达33%的改进。虽然设计空间很复杂,但最终的调度器在内部和应用程序级接口上都很简单。它还提供跨网络和编程模型的性能可移植性。我们相信这些技术可以很容易地在任何使用单边通信的应用程序或运行时框架中进行改造,例如使用GASNet、MPI 3.0 RMA或低级api(如IBVerbs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application Level Reordering of Remote Direct Memory Access Operations
We present methods for the effective application level reordering of non-blocking RDMA operations. We supplement out-of-order hardware delivery mechanisms with heuristics to account for the CPU side overhead of communication and for differences in network latency: a runtime scheduler takes into account message sizes, destination and concurrency and reorders operations to improve overall communication throughput. Results are validated on InfiniBand and Cray Aries networks, for SPMD and hybrid (SPMD+OpenMP) programming models. We show up to 5! potential speedup, with 30-50% more typical, for synthetic message patterns in microbenchmarks. We also obtain up to 33% improvement in the communication stages in application settings. While the design space is complex, the resulting scheduler is simple, both internally and at the application level interfaces. It also provides performance portability across networks and programming models. We believe these techniques can be easily retrofitted within any application or runtime framework that uses one-sided communication, e.g. using GASNet, MPI 3.0 RMA or low level APIs such as IBVerbs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL Toucan — A Translator for Communication Tolerant MPI Applications Production Hardware Overprovisioning: Real-World Performance Optimization Using an Extensible Power-Aware Resource Management Framework Approximation Proofs of a Fast and Efficient List Scheduling Algorithm for Task-Based Runtime Systems on Multicores and GPUs Dynamic Memory-Aware Task-Tree Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1