AES处理器加速器

R. Lee, Yu-Yuan Chen
{"title":"AES处理器加速器","authors":"R. Lee, Yu-Yuan Chen","doi":"10.1109/SASP.2010.5521153","DOIUrl":null,"url":null,"abstract":"Software AES cipher performance is not fast enough for encryption to be incorporated ubiquitously for all computing needs. Furthermore, fast software implementations of AES that use table lookups are susceptible to software cache-based side channel attacks, leaking the secret encryption key. To bridge the gap between software and hardware AES implementations, several Instruction Set Architecture (ISA) extensions have been proposed to provide speedup for software AES programs, most notably the recent introduction of six AES-specific instructions for Intel microprocessors. However, algorithm-specific instructions are less desirable than general-purpose ones for microprocessors. In this paper, we propose an enhanced parallel table lookup instruction that can achieve the fastest reported software AES encryption and decryption of 1.38 cycles/byte for general-purpose microprocessors, a 1.45X speedup from the fastest prior work reported. Also, security is improved where cache-based side-channel attacks are thwarted, since all table lookups take the same amount of time. Furthermore, the new instructions can also be used to accelerate any functions that can be accelerated through table lookup operations of one or multiple small tables.","PeriodicalId":119893,"journal":{"name":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Processor accelerator for AES\",\"authors\":\"R. Lee, Yu-Yuan Chen\",\"doi\":\"10.1109/SASP.2010.5521153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software AES cipher performance is not fast enough for encryption to be incorporated ubiquitously for all computing needs. Furthermore, fast software implementations of AES that use table lookups are susceptible to software cache-based side channel attacks, leaking the secret encryption key. To bridge the gap between software and hardware AES implementations, several Instruction Set Architecture (ISA) extensions have been proposed to provide speedup for software AES programs, most notably the recent introduction of six AES-specific instructions for Intel microprocessors. However, algorithm-specific instructions are less desirable than general-purpose ones for microprocessors. In this paper, we propose an enhanced parallel table lookup instruction that can achieve the fastest reported software AES encryption and decryption of 1.38 cycles/byte for general-purpose microprocessors, a 1.45X speedup from the fastest prior work reported. Also, security is improved where cache-based side-channel attacks are thwarted, since all table lookups take the same amount of time. Furthermore, the new instructions can also be used to accelerate any functions that can be accelerated through table lookup operations of one or multiple small tables.\",\"PeriodicalId\":119893,\"journal\":{\"name\":\"2010 IEEE 8th Symposium on Application Specific Processors (SASP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 8th Symposium on Application Specific Processors (SASP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASP.2010.5521153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2010.5521153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

软件AES密码性能不够快,无法将加密纳入所有计算需求。此外,使用表查找的AES的快速软件实现容易受到基于软件缓存的侧通道攻击,泄露秘密加密密钥。为了弥合软件和硬件AES实现之间的差距,已经提出了几个指令集体系结构(ISA)扩展来为软件AES程序提供加速,最值得注意的是最近为英特尔微处理器引入的六个特定于AES的指令。然而,对于微处理器来说,特定于算法的指令不如通用指令理想。在本文中,我们提出了一种增强的并行表查找指令,它可以在通用微处理器上实现最快的软件AES加密和解密,速度为1.38周期/字节,比之前报道的最快速度提高了1.45倍。此外,在阻止基于缓存的侧通道攻击的情况下,安全性得到了提高,因为所有表查找都需要相同的时间。此外,新的指令还可以用来加速任何可以通过一个或多个小表的查找操作来加速的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processor accelerator for AES
Software AES cipher performance is not fast enough for encryption to be incorporated ubiquitously for all computing needs. Furthermore, fast software implementations of AES that use table lookups are susceptible to software cache-based side channel attacks, leaking the secret encryption key. To bridge the gap between software and hardware AES implementations, several Instruction Set Architecture (ISA) extensions have been proposed to provide speedup for software AES programs, most notably the recent introduction of six AES-specific instructions for Intel microprocessors. However, algorithm-specific instructions are less desirable than general-purpose ones for microprocessors. In this paper, we propose an enhanced parallel table lookup instruction that can achieve the fastest reported software AES encryption and decryption of 1.38 cycles/byte for general-purpose microprocessors, a 1.45X speedup from the fastest prior work reported. Also, security is improved where cache-based side-channel attacks are thwarted, since all table lookups take the same amount of time. Furthermore, the new instructions can also be used to accelerate any functions that can be accelerated through table lookup operations of one or multiple small tables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimizing write activities to non-volatile memory via scheduling and recomputation CMA: Chip multi-accelerator A processing engine for GPS correlation Early performance-cost estimation of application-specific data path pipelining Processor accelerator for AES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1