中年波斯语字符识别的有效选择特征集

S. Alirezaee, H. Aghaeinia, M. Ahmadi, K. Faez
{"title":"中年波斯语字符识别的有效选择特征集","authors":"S. Alirezaee, H. Aghaeinia, M. Ahmadi, K. Faez","doi":"10.1109/AIPR.2004.12","DOIUrl":null,"url":null,"abstract":"In this paper, a morphological based method for recognition of handwritten middle Persian characters is presented. After pre-processing and noise cancellation, morphological erosion operator with many structure elements is applied. The structure elements are with variable length lines at directions 0, 45, 90, 135 degrees. A five element feature set has been defined so: (1) relative energy of eroded version with respect to the original image energy (REL/spl I.bar/ENG),(2) displacement of the center of mass (CM/spl I.bar//spl I.bar/DIS), (3) minimum eigenvalue (EIG/spl I.bar/MIN), (4) maximum eigenvalue (EIG/spl I.bar/MAX) and (5) its direction (EIG-DIR). These features are used to design a feedforward neural network with one hidden layer. The best classification error is about 2.39% (97.61% recognition rate), and is achieved with 150 neurons for the hidden layer.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An efficient selected feature set for the middle age Persian character recognition\",\"authors\":\"S. Alirezaee, H. Aghaeinia, M. Ahmadi, K. Faez\",\"doi\":\"10.1109/AIPR.2004.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a morphological based method for recognition of handwritten middle Persian characters is presented. After pre-processing and noise cancellation, morphological erosion operator with many structure elements is applied. The structure elements are with variable length lines at directions 0, 45, 90, 135 degrees. A five element feature set has been defined so: (1) relative energy of eroded version with respect to the original image energy (REL/spl I.bar/ENG),(2) displacement of the center of mass (CM/spl I.bar//spl I.bar/DIS), (3) minimum eigenvalue (EIG/spl I.bar/MIN), (4) maximum eigenvalue (EIG/spl I.bar/MAX) and (5) its direction (EIG-DIR). These features are used to design a feedforward neural network with one hidden layer. The best classification error is about 2.39% (97.61% recognition rate), and is achieved with 150 neurons for the hidden layer.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于形态学的中波斯手写体汉字识别方法。经过预处理和去噪后,采用多结构元形态侵蚀算子。结构元件在0、45、90、135度方向上具有可变长度线。定义了一个五元素特征集:(1)侵蚀版相对于原始图像能量的相对能量(REL/spl I.bar/ENG),(2)质心位移(CM/spl I.bar//spl I.bar/DIS),(3)最小特征值(EIG/spl I.bar/MIN),(4)最大特征值(EIG/spl I.bar/MAX)和(5)其方向(EIG- dir)。利用这些特征设计了一个具有一个隐藏层的前馈神经网络。在隐藏层使用150个神经元时,分类误差达到2.39%(识别率为97.61%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient selected feature set for the middle age Persian character recognition
In this paper, a morphological based method for recognition of handwritten middle Persian characters is presented. After pre-processing and noise cancellation, morphological erosion operator with many structure elements is applied. The structure elements are with variable length lines at directions 0, 45, 90, 135 degrees. A five element feature set has been defined so: (1) relative energy of eroded version with respect to the original image energy (REL/spl I.bar/ENG),(2) displacement of the center of mass (CM/spl I.bar//spl I.bar/DIS), (3) minimum eigenvalue (EIG/spl I.bar/MIN), (4) maximum eigenvalue (EIG/spl I.bar/MAX) and (5) its direction (EIG-DIR). These features are used to design a feedforward neural network with one hidden layer. The best classification error is about 2.39% (97.61% recognition rate), and is achieved with 150 neurons for the hidden layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Top-down approach to segmentation of prostate boundaries in ultrasound images Computation in the higher visual cortices: map-seeking circuit theory and application to machine vision Neurally-based algorithms for image processing Image primitive signatures A multiresolution time domain approach to RF image formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1