{"title":"用于儿童牙髓治疗的二极管激光器:最先进的!","authors":"R. Naik, G. Raviraj, C. Yavagal, P. Mandroli","doi":"10.4103/JDL.JDL_1_17","DOIUrl":null,"url":null,"abstract":"Introduction: Conventional chemomechanical debridement (CMD) of deciduous root canals can significantly reduce the intracanal bacterial load but cannot assure predictable disinfection due to the inherent anatomical complexities. Newer methods are thus being employed to enhance the efficacy of pediatric endodontic disinfection, and the use of laser technology is at the forefront of this endeavor. Aim: The aim is to assess the efficacy of diode laser-assisted disinfection in comparison to conventional sodium hypochlorite (NaOCl) based CMD in deciduous root canals. Materials and Methods: A total of 12 patients aged 5–8 years of both genders were selected. Local anesthesia was administered and rubber dam isolation achieved. Access opening was done and the roof of the pulp chamber was removed. A sterile paper point compatible with the anatomic diameter of the canal was introduced and left in place for 30 s ( first sample) which was then transferred into an Eppendorf tube containing reduced transport fluid medium. CMD was performed up to 25 number K-file with intermittent 3% NaOCl irrigation. Post-CMD, sterile number 25 paper points were introduced as above (second sample). Thereafter, an 810 nm diode laser (1W, CW) with a specific endodontic E-200 tip was introduced into the root canals 2 mm short of the radiographic apex and was gently withdrawn in a helical zigzag motion. Another sample was then taken using a sterile No. 25 paper point (third sample) and transported to the microbiological laboratory for culture. Results: The mean reduction in colony forming units postdiode laser application was seen to be 100% when compared to 98.46% reduction after CMD with 3% NaOCl. Conclusion: An 810 nm diode laser can be used as an effective adjunct to conventional methods of deciduous root canal disinfection.","PeriodicalId":345720,"journal":{"name":"Journal of Dental Lasers","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Diode lasers for pediatric endodontics: State-of-the-art!\",\"authors\":\"R. Naik, G. Raviraj, C. Yavagal, P. Mandroli\",\"doi\":\"10.4103/JDL.JDL_1_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Conventional chemomechanical debridement (CMD) of deciduous root canals can significantly reduce the intracanal bacterial load but cannot assure predictable disinfection due to the inherent anatomical complexities. Newer methods are thus being employed to enhance the efficacy of pediatric endodontic disinfection, and the use of laser technology is at the forefront of this endeavor. Aim: The aim is to assess the efficacy of diode laser-assisted disinfection in comparison to conventional sodium hypochlorite (NaOCl) based CMD in deciduous root canals. Materials and Methods: A total of 12 patients aged 5–8 years of both genders were selected. Local anesthesia was administered and rubber dam isolation achieved. Access opening was done and the roof of the pulp chamber was removed. A sterile paper point compatible with the anatomic diameter of the canal was introduced and left in place for 30 s ( first sample) which was then transferred into an Eppendorf tube containing reduced transport fluid medium. CMD was performed up to 25 number K-file with intermittent 3% NaOCl irrigation. Post-CMD, sterile number 25 paper points were introduced as above (second sample). Thereafter, an 810 nm diode laser (1W, CW) with a specific endodontic E-200 tip was introduced into the root canals 2 mm short of the radiographic apex and was gently withdrawn in a helical zigzag motion. Another sample was then taken using a sterile No. 25 paper point (third sample) and transported to the microbiological laboratory for culture. Results: The mean reduction in colony forming units postdiode laser application was seen to be 100% when compared to 98.46% reduction after CMD with 3% NaOCl. Conclusion: An 810 nm diode laser can be used as an effective adjunct to conventional methods of deciduous root canal disinfection.\",\"PeriodicalId\":345720,\"journal\":{\"name\":\"Journal of Dental Lasers\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dental Lasers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/JDL.JDL_1_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JDL.JDL_1_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diode lasers for pediatric endodontics: State-of-the-art!
Introduction: Conventional chemomechanical debridement (CMD) of deciduous root canals can significantly reduce the intracanal bacterial load but cannot assure predictable disinfection due to the inherent anatomical complexities. Newer methods are thus being employed to enhance the efficacy of pediatric endodontic disinfection, and the use of laser technology is at the forefront of this endeavor. Aim: The aim is to assess the efficacy of diode laser-assisted disinfection in comparison to conventional sodium hypochlorite (NaOCl) based CMD in deciduous root canals. Materials and Methods: A total of 12 patients aged 5–8 years of both genders were selected. Local anesthesia was administered and rubber dam isolation achieved. Access opening was done and the roof of the pulp chamber was removed. A sterile paper point compatible with the anatomic diameter of the canal was introduced and left in place for 30 s ( first sample) which was then transferred into an Eppendorf tube containing reduced transport fluid medium. CMD was performed up to 25 number K-file with intermittent 3% NaOCl irrigation. Post-CMD, sterile number 25 paper points were introduced as above (second sample). Thereafter, an 810 nm diode laser (1W, CW) with a specific endodontic E-200 tip was introduced into the root canals 2 mm short of the radiographic apex and was gently withdrawn in a helical zigzag motion. Another sample was then taken using a sterile No. 25 paper point (third sample) and transported to the microbiological laboratory for culture. Results: The mean reduction in colony forming units postdiode laser application was seen to be 100% when compared to 98.46% reduction after CMD with 3% NaOCl. Conclusion: An 810 nm diode laser can be used as an effective adjunct to conventional methods of deciduous root canal disinfection.