基于lsm的存储和索引:一个具有及时优势的老想法

Sattam Alsubaiee, M. Carey, Chen Li
{"title":"基于lsm的存储和索引:一个具有及时优势的老想法","authors":"Sattam Alsubaiee, M. Carey, Chen Li","doi":"10.1145/2786006.2786007","DOIUrl":null,"url":null,"abstract":"With the social-media data explosion, near real-time queries, particularly those of a spatio-temporal nature, can be challenging. In this paper, we show how to efficiently answer queries that target recent data within very large data sets. We describe a solution that exploits a natural partitioning property that LSM-based indexes have for components, allowing us to filter out many components when answering queries. Our solution is generalizable to any LSM-based index structure, and can be applied not just on temporal fields (e.g., based on recency), but on any \"time-correlated fields\" such as Universally Unique Identifiers (UUIDs), user-provided integer ids, etc. We have implemented and experimentally evaluated the solution in the context of the AsterixDB system.","PeriodicalId":443011,"journal":{"name":"Second International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"LSM-Based Storage and Indexing: An Old Idea with Timely Benefits\",\"authors\":\"Sattam Alsubaiee, M. Carey, Chen Li\",\"doi\":\"10.1145/2786006.2786007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the social-media data explosion, near real-time queries, particularly those of a spatio-temporal nature, can be challenging. In this paper, we show how to efficiently answer queries that target recent data within very large data sets. We describe a solution that exploits a natural partitioning property that LSM-based indexes have for components, allowing us to filter out many components when answering queries. Our solution is generalizable to any LSM-based index structure, and can be applied not just on temporal fields (e.g., based on recency), but on any \\\"time-correlated fields\\\" such as Universally Unique Identifiers (UUIDs), user-provided integer ids, etc. We have implemented and experimentally evaluated the solution in the context of the AsterixDB system.\",\"PeriodicalId\":443011,\"journal\":{\"name\":\"Second International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2786006.2786007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786006.2786007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

随着社交媒体数据的爆炸式增长,接近实时的查询,特别是那些具有时空性质的查询,可能具有挑战性。在本文中,我们展示了如何在非常大的数据集中有效地回答针对最近数据的查询。我们描述了一种解决方案,该解决方案利用了基于lsm的索引对组件具有的自然分区属性,允许我们在回答查询时过滤掉许多组件。我们的解决方案可推广到任何基于lsm的索引结构,并且不仅可以应用于时间字段(例如,基于近因),还可以应用于任何“时间相关字段”,例如通用唯一标识符(uuid)、用户提供的整数id等。我们已经在AsterixDB系统的上下文中实现并实验评估了该解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSM-Based Storage and Indexing: An Old Idea with Timely Benefits
With the social-media data explosion, near real-time queries, particularly those of a spatio-temporal nature, can be challenging. In this paper, we show how to efficiently answer queries that target recent data within very large data sets. We describe a solution that exploits a natural partitioning property that LSM-based indexes have for components, allowing us to filter out many components when answering queries. Our solution is generalizable to any LSM-based index structure, and can be applied not just on temporal fields (e.g., based on recency), but on any "time-correlated fields" such as Universally Unique Identifiers (UUIDs), user-provided integer ids, etc. We have implemented and experimentally evaluated the solution in the context of the AsterixDB system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selecting Representative Objects Considering Coverage and Diversity LSM-Based Storage and Indexing: An Old Idea with Timely Benefits Second International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data Batch processing of Top-k Spatial-textual Queries Group Nearest Neighbor Queries for Fuzzy Geo-Spatial Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1