基于四元数小波变换和奇异值分解的医学图像超分辨率增强

V. V. Kumar, A. Vidya, M. Sharumathy, R. Kanizohi
{"title":"基于四元数小波变换和奇异值分解的医学图像超分辨率增强","authors":"V. V. Kumar, A. Vidya, M. Sharumathy, R. Kanizohi","doi":"10.1109/ICSCN.2017.8085687","DOIUrl":null,"url":null,"abstract":"In this paper, a novel resolution enhancement approach based on Quaternion wavelet transform (QWT) with singular value decomposition (SVD) is proposed. The technique decomposes the input image into sixteen frequency sub bands by using QWT. The singular values of the low-low sub band image are estimated and the high frequency sub bands are interpolated using Lanczos interpolation. Finally, a contrast enhanced super resolution image is obtained by combining the interpolated high frequency sub bands and contrast enhanced image by inverse QWT. The visual and quantitative results show that the proposed QWT-SVD method clearly outperforms the bilinear, bicubic, DWT-bicubic, DTCWT-NLM-SVD with better edge preservation.","PeriodicalId":383458,"journal":{"name":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Super resolution enhancement of medical image using quaternion wavelet transform with SVD\",\"authors\":\"V. V. Kumar, A. Vidya, M. Sharumathy, R. Kanizohi\",\"doi\":\"10.1109/ICSCN.2017.8085687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel resolution enhancement approach based on Quaternion wavelet transform (QWT) with singular value decomposition (SVD) is proposed. The technique decomposes the input image into sixteen frequency sub bands by using QWT. The singular values of the low-low sub band image are estimated and the high frequency sub bands are interpolated using Lanczos interpolation. Finally, a contrast enhanced super resolution image is obtained by combining the interpolated high frequency sub bands and contrast enhanced image by inverse QWT. The visual and quantitative results show that the proposed QWT-SVD method clearly outperforms the bilinear, bicubic, DWT-bicubic, DTCWT-NLM-SVD with better edge preservation.\",\"PeriodicalId\":383458,\"journal\":{\"name\":\"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2017.8085687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2017.8085687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于四元数小波变换和奇异值分解(SVD)的图像分辨率增强方法。该技术利用量子小波变换将输入图像分解为16个子频带。对低低频子带图像的奇异值进行估计,并利用Lanczos插值对高频子带进行插值。最后,通过逆QWT将插值后的高频子带与对比度增强图像相结合,得到对比度增强的超分辨率图像。视觉和定量结果表明,QWT-SVD方法明显优于双线性、双三次、dwt -双三次、dtwt - nlm - svd方法,具有更好的边缘保持效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super resolution enhancement of medical image using quaternion wavelet transform with SVD
In this paper, a novel resolution enhancement approach based on Quaternion wavelet transform (QWT) with singular value decomposition (SVD) is proposed. The technique decomposes the input image into sixteen frequency sub bands by using QWT. The singular values of the low-low sub band image are estimated and the high frequency sub bands are interpolated using Lanczos interpolation. Finally, a contrast enhanced super resolution image is obtained by combining the interpolated high frequency sub bands and contrast enhanced image by inverse QWT. The visual and quantitative results show that the proposed QWT-SVD method clearly outperforms the bilinear, bicubic, DWT-bicubic, DTCWT-NLM-SVD with better edge preservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of programmable read only memory using reversible decoder on FPGA Literature survey on traffic-based server load balancing using SDN and open flow A survey on ARP cache poisoning and techniques for detection and mitigation Machine condition monitoring using audio signature analysis Robust audio watermarking for monitoring and information embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1