FakeBuster:视频会议场景的深度伪造检测工具

V. Mehta, Parul Gupta, Ramanathan Subramanian, Abhinav Dhall
{"title":"FakeBuster:视频会议场景的深度伪造检测工具","authors":"V. Mehta, Parul Gupta, Ramanathan Subramanian, Abhinav Dhall","doi":"10.1145/3397482.3450726","DOIUrl":null,"url":null,"abstract":"This paper proposes FakeBuster, a novel DeepFake detector for (a) detecting impostors during video conferencing, and (b) manipulated faces on social media. FakeBuster is a standalone deep learning- based solution, which enables a user to detect if another person’s video is manipulated or spoofed during a video conference-based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It employs a 3D convolutional neural network for predicting video fakeness. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured images (specific to video conferencing scenarios). Diversity in the training data makes FakeBuster robust to multiple environments and facial manipulations, thereby making it generalizable and ecologically valid.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"659 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"FakeBuster: A DeepFakes Detection Tool for Video Conferencing Scenarios\",\"authors\":\"V. Mehta, Parul Gupta, Ramanathan Subramanian, Abhinav Dhall\",\"doi\":\"10.1145/3397482.3450726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes FakeBuster, a novel DeepFake detector for (a) detecting impostors during video conferencing, and (b) manipulated faces on social media. FakeBuster is a standalone deep learning- based solution, which enables a user to detect if another person’s video is manipulated or spoofed during a video conference-based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It employs a 3D convolutional neural network for predicting video fakeness. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured images (specific to video conferencing scenarios). Diversity in the training data makes FakeBuster robust to multiple environments and facial manipulations, thereby making it generalizable and ecologically valid.\",\"PeriodicalId\":216190,\"journal\":{\"name\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"volume\":\"659 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397482.3450726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了FakeBuster,一种新颖的DeepFake检测器,用于(a)在视频会议中检测冒名者,以及(b)在社交媒体上被操纵的面孔。FakeBuster是一个独立的基于深度学习的解决方案,它使用户能够在视频会议期间检测到另一个人的视频是否被操纵或欺骗。该工具独立于视频会议解决方案,并已与Zoom和Skype应用程序进行了测试。它采用3D卷积神经网络来预测视频的真实性。该网络在Deeperforensics、DFDC、VoxCeleb和deepfake等数据集的组合上进行训练,这些数据集使用本地捕获的图像(特定于视频会议场景)创建。训练数据的多样性使FakeBuster对多种环境和面部操作具有鲁棒性,从而使其具有普遍性和生态有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FakeBuster: A DeepFakes Detection Tool for Video Conferencing Scenarios
This paper proposes FakeBuster, a novel DeepFake detector for (a) detecting impostors during video conferencing, and (b) manipulated faces on social media. FakeBuster is a standalone deep learning- based solution, which enables a user to detect if another person’s video is manipulated or spoofed during a video conference-based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It employs a 3D convolutional neural network for predicting video fakeness. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured images (specific to video conferencing scenarios). Diversity in the training data makes FakeBuster robust to multiple environments and facial manipulations, thereby making it generalizable and ecologically valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Over-sketching Operation to Realize Geometrical and Topological Editing across Multiple Objects in Sketch-based CAD Interface TIEVis: a Visual Analytics Dashboard for Temporal Information Extracted from Clinical Reports SynZ: Enhanced Synthetic Dataset for Training UI Element Detectors User-Controlled Content Translation in Social Media VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1