V. Mehta, Parul Gupta, Ramanathan Subramanian, Abhinav Dhall
{"title":"FakeBuster:视频会议场景的深度伪造检测工具","authors":"V. Mehta, Parul Gupta, Ramanathan Subramanian, Abhinav Dhall","doi":"10.1145/3397482.3450726","DOIUrl":null,"url":null,"abstract":"This paper proposes FakeBuster, a novel DeepFake detector for (a) detecting impostors during video conferencing, and (b) manipulated faces on social media. FakeBuster is a standalone deep learning- based solution, which enables a user to detect if another person’s video is manipulated or spoofed during a video conference-based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It employs a 3D convolutional neural network for predicting video fakeness. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured images (specific to video conferencing scenarios). Diversity in the training data makes FakeBuster robust to multiple environments and facial manipulations, thereby making it generalizable and ecologically valid.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"659 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"FakeBuster: A DeepFakes Detection Tool for Video Conferencing Scenarios\",\"authors\":\"V. Mehta, Parul Gupta, Ramanathan Subramanian, Abhinav Dhall\",\"doi\":\"10.1145/3397482.3450726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes FakeBuster, a novel DeepFake detector for (a) detecting impostors during video conferencing, and (b) manipulated faces on social media. FakeBuster is a standalone deep learning- based solution, which enables a user to detect if another person’s video is manipulated or spoofed during a video conference-based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It employs a 3D convolutional neural network for predicting video fakeness. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured images (specific to video conferencing scenarios). Diversity in the training data makes FakeBuster robust to multiple environments and facial manipulations, thereby making it generalizable and ecologically valid.\",\"PeriodicalId\":216190,\"journal\":{\"name\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"volume\":\"659 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397482.3450726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FakeBuster: A DeepFakes Detection Tool for Video Conferencing Scenarios
This paper proposes FakeBuster, a novel DeepFake detector for (a) detecting impostors during video conferencing, and (b) manipulated faces on social media. FakeBuster is a standalone deep learning- based solution, which enables a user to detect if another person’s video is manipulated or spoofed during a video conference-based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It employs a 3D convolutional neural network for predicting video fakeness. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured images (specific to video conferencing scenarios). Diversity in the training data makes FakeBuster robust to multiple environments and facial manipulations, thereby making it generalizable and ecologically valid.