Pref-X:一个框架,用于揭示商业顺序核中的数据预取

Quentin Huppert, F. Catthoor, L. Torres, D. Novo
{"title":"Pref-X:一个框架,用于揭示商业顺序核中的数据预取","authors":"Quentin Huppert, F. Catthoor, L. Torres, D. Novo","doi":"10.1145/3489517.3530569","DOIUrl":null,"url":null,"abstract":"Computer system simulators are major tools used by architecture researchers to develop and evaluate new ideas. Clearly, such evaluations are more conclusive when compared to commercial state-of-the-art architectures. However, the behavior of key components in existing processors is often not disclosed, complicating the construction of faithful reference models. The data prefetching engine is one of such obscured components that can have a significant impact on key metrics such as performance and energy. In this paper, we propose Pref-X, a framework to analyze functional characteristics of data prefetching in commercial in-order cores. Our framework reveals data prefetches by X-raying into the cache memory at the request granularity, which allows linking memory access patterns with changes in the cache content. To demonstrate the power and accuracy of our methodology, we use Pref-X to replicate the data prefetching mechanisms of two representative processors, namely the Arm Cortex-A7 and the Arm Cortex-A53, with a 99.8% and 96.9% average accuracy, respectively.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"476 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pref-X: a framework to reveal data prefetching in commercial in-order cores\",\"authors\":\"Quentin Huppert, F. Catthoor, L. Torres, D. Novo\",\"doi\":\"10.1145/3489517.3530569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer system simulators are major tools used by architecture researchers to develop and evaluate new ideas. Clearly, such evaluations are more conclusive when compared to commercial state-of-the-art architectures. However, the behavior of key components in existing processors is often not disclosed, complicating the construction of faithful reference models. The data prefetching engine is one of such obscured components that can have a significant impact on key metrics such as performance and energy. In this paper, we propose Pref-X, a framework to analyze functional characteristics of data prefetching in commercial in-order cores. Our framework reveals data prefetches by X-raying into the cache memory at the request granularity, which allows linking memory access patterns with changes in the cache content. To demonstrate the power and accuracy of our methodology, we use Pref-X to replicate the data prefetching mechanisms of two representative processors, namely the Arm Cortex-A7 and the Arm Cortex-A53, with a 99.8% and 96.9% average accuracy, respectively.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"476 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机系统模拟器是建筑研究人员用来开发和评估新想法的主要工具。显然,与商业最先进的体系结构相比,这样的评估更具决定性。然而,现有处理器中关键组件的行为通常不公开,使忠实参考模型的构建复杂化。数据预取引擎就是这样一个模糊的组件,它可能对性能和能耗等关键指标产生重大影响。在本文中,我们提出了Pref-X框架来分析商业顺序核中数据预取的功能特征。我们的框架通过在请求粒度上对缓存进行x射线扫描来显示数据预取,这允许将内存访问模式与缓存内容的更改联系起来。为了证明我们方法的强大和准确性,我们使用Pref-X来复制两种代表性处理器(即Arm Cortex-A7和Arm Cortex-A53)的数据预取机制,平均准确率分别为99.8%和96.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pref-X: a framework to reveal data prefetching in commercial in-order cores
Computer system simulators are major tools used by architecture researchers to develop and evaluate new ideas. Clearly, such evaluations are more conclusive when compared to commercial state-of-the-art architectures. However, the behavior of key components in existing processors is often not disclosed, complicating the construction of faithful reference models. The data prefetching engine is one of such obscured components that can have a significant impact on key metrics such as performance and energy. In this paper, we propose Pref-X, a framework to analyze functional characteristics of data prefetching in commercial in-order cores. Our framework reveals data prefetches by X-raying into the cache memory at the request granularity, which allows linking memory access patterns with changes in the cache content. To demonstrate the power and accuracy of our methodology, we use Pref-X to replicate the data prefetching mechanisms of two representative processors, namely the Arm Cortex-A7 and the Arm Cortex-A53, with a 99.8% and 96.9% average accuracy, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timing macro modeling with graph neural networks Thermal-aware optical-electrical routing codesign for on-chip signal communications PHANES ScaleHLS Terminator on SkyNet: a practical DVFS attack on DNN hardware IP for UAV object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1