基于神经网络的本体匹配:综述与分析

Meriem Ali Khoudja, Messaouda Fareh, Hafida Bouarfa
{"title":"基于神经网络的本体匹配:综述与分析","authors":"Meriem Ali Khoudja, Messaouda Fareh, Hafida Bouarfa","doi":"10.1109/ICASS.2018.8652049","DOIUrl":null,"url":null,"abstract":"Ontology matching is an effective method to establish interoperability between heterogeneous ontologies. Artificial neural networks are powerful computational models biologically inspired from human brain, and the way how they learn and process information. They have proved their efficiency in many fields. In this paper, we aim at studying all the different ontology matching approaches based on neural networks, in order to conclude how to ideally make use of these machine learning models to match heterogeneous ontologies.","PeriodicalId":358814,"journal":{"name":"2018 International Conference on Applied Smart Systems (ICASS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Ontology Matching using Neural Networks: Survey and Analysis\",\"authors\":\"Meriem Ali Khoudja, Messaouda Fareh, Hafida Bouarfa\",\"doi\":\"10.1109/ICASS.2018.8652049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology matching is an effective method to establish interoperability between heterogeneous ontologies. Artificial neural networks are powerful computational models biologically inspired from human brain, and the way how they learn and process information. They have proved their efficiency in many fields. In this paper, we aim at studying all the different ontology matching approaches based on neural networks, in order to conclude how to ideally make use of these machine learning models to match heterogeneous ontologies.\",\"PeriodicalId\":358814,\"journal\":{\"name\":\"2018 International Conference on Applied Smart Systems (ICASS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Smart Systems (ICASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASS.2018.8652049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Smart Systems (ICASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASS.2018.8652049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本体匹配是建立异构本体间互操作性的有效方法。人工神经网络是一种强大的计算模型,其生物学灵感来自于人类大脑,以及它们学习和处理信息的方式。它们已经在许多领域证明了它们的有效性。在本文中,我们旨在研究所有不同的基于神经网络的本体匹配方法,以得出如何理想地利用这些机器学习模型来匹配异构本体的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontology Matching using Neural Networks: Survey and Analysis
Ontology matching is an effective method to establish interoperability between heterogeneous ontologies. Artificial neural networks are powerful computational models biologically inspired from human brain, and the way how they learn and process information. They have proved their efficiency in many fields. In this paper, we aim at studying all the different ontology matching approaches based on neural networks, in order to conclude how to ideally make use of these machine learning models to match heterogeneous ontologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Neural Network Modeling of Sustained Antihypertensive Drug Delivery using Polyelectrolyte Complex based on Carboxymethyl-kappa-carrageenan and Chitosan as Prospective Carriers Scaled artificial bee colony programming Semi-Supervised Learning for Medical Application: A Survey Simulation of 2D Optical Code Division Multiple Access System with Different Receiver Structures using Multi-Wavelength Optical Orthogonal Codes EPBT and CO2 emission from solar PV monocrystaline silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1