{"title":"数字时钟监控和故障诊断","authors":"K. Altisen, F. Cassez, S. Tripakis","doi":"10.1109/ACSD.2006.10","DOIUrl":null,"url":null,"abstract":"We study the monitoring and fault-diagnosis problems for dense-time real-time systems, where observers (monitors and diagnosers) have access to digital rather than analog clocks. Analog clocks are infinitely-precise, thus, not implementable. We show how, given a specification modeled as a timed automaton and a timed automaton model of the digital clock, a sound and optimal (i.e., as precise as possible) digital-clock monitor can be synthesized. We also show how, given plant and digital clock modeled as timed automata, we can check existence of a digital-clock diagnoser and, if one exists, how to synthesize it. Finally, we consider the problem of existence of digital-clock diagnosers where the digital clock is unknown. We show that there are cases where a digital clock, no matter how precise, does not exist, even though the system is diagnosable with analog clocks. Finally, we provide a sufficient condition for digital-clock diagnosability.","PeriodicalId":127278,"journal":{"name":"International Conference on Application of Concurrency to System Design","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Monitoring and fault-diagnosis with digital clocks\",\"authors\":\"K. Altisen, F. Cassez, S. Tripakis\",\"doi\":\"10.1109/ACSD.2006.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the monitoring and fault-diagnosis problems for dense-time real-time systems, where observers (monitors and diagnosers) have access to digital rather than analog clocks. Analog clocks are infinitely-precise, thus, not implementable. We show how, given a specification modeled as a timed automaton and a timed automaton model of the digital clock, a sound and optimal (i.e., as precise as possible) digital-clock monitor can be synthesized. We also show how, given plant and digital clock modeled as timed automata, we can check existence of a digital-clock diagnoser and, if one exists, how to synthesize it. Finally, we consider the problem of existence of digital-clock diagnosers where the digital clock is unknown. We show that there are cases where a digital clock, no matter how precise, does not exist, even though the system is diagnosable with analog clocks. Finally, we provide a sufficient condition for digital-clock diagnosability.\",\"PeriodicalId\":127278,\"journal\":{\"name\":\"International Conference on Application of Concurrency to System Design\",\"volume\":\"518 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Application of Concurrency to System Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2006.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Application of Concurrency to System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2006.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring and fault-diagnosis with digital clocks
We study the monitoring and fault-diagnosis problems for dense-time real-time systems, where observers (monitors and diagnosers) have access to digital rather than analog clocks. Analog clocks are infinitely-precise, thus, not implementable. We show how, given a specification modeled as a timed automaton and a timed automaton model of the digital clock, a sound and optimal (i.e., as precise as possible) digital-clock monitor can be synthesized. We also show how, given plant and digital clock modeled as timed automata, we can check existence of a digital-clock diagnoser and, if one exists, how to synthesize it. Finally, we consider the problem of existence of digital-clock diagnosers where the digital clock is unknown. We show that there are cases where a digital clock, no matter how precise, does not exist, even though the system is diagnosable with analog clocks. Finally, we provide a sufficient condition for digital-clock diagnosability.