时间演化网络中的重子图挖掘

Petko Bogdanov, M. Mongiovì, Ambuj K. Singh
{"title":"时间演化网络中的重子图挖掘","authors":"Petko Bogdanov, M. Mongiovì, Ambuj K. Singh","doi":"10.1109/ICDM.2011.101","DOIUrl":null,"url":null,"abstract":"Networks from different genres are not static entities, but exhibit dynamic behavior. The congestion level of links in transportation networks varies in time depending on the traffic. Similarly, social and communication links are employed at varying rates as information cascades unfold. In recent years there has been an increase of interest in modeling and mining dynamic networks. However, limited attention has been placed in high-scoring sub graph discovery in time-evolving networks. We define the problem of finding the highest-scoring temporal sub graph in a dynamic network, termed Heaviest Dynamic Sub graph (HDS). We show that HDS is NP-hard even with edge weights in {-1,1} and devise an efficient approach for large graph instances that evolve over long time periods. While a naive approach would enumerate all O(t^2) sub-intervals, our solution performs an effective pruning of the sub-interval space by considering O(t*log(t)) groups of sub-intervals and computing an aggregate of each group in logarithmic time. We also define a fast heuristic and a tight upper bound for approximating the static version of HDS, and use them for further pruning the sub-interval space and quickly verifying candidate sub-intervals. We perform an extensive experimental evaluation of our algorithm on transportation, communication and social media networks for discovering sub graphs that correspond to traffic congestions, communication overflow and localized social discussions. Our method is two orders of magnitude faster than a naive approach and scales well with network size and time length.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Mining Heavy Subgraphs in Time-Evolving Networks\",\"authors\":\"Petko Bogdanov, M. Mongiovì, Ambuj K. Singh\",\"doi\":\"10.1109/ICDM.2011.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks from different genres are not static entities, but exhibit dynamic behavior. The congestion level of links in transportation networks varies in time depending on the traffic. Similarly, social and communication links are employed at varying rates as information cascades unfold. In recent years there has been an increase of interest in modeling and mining dynamic networks. However, limited attention has been placed in high-scoring sub graph discovery in time-evolving networks. We define the problem of finding the highest-scoring temporal sub graph in a dynamic network, termed Heaviest Dynamic Sub graph (HDS). We show that HDS is NP-hard even with edge weights in {-1,1} and devise an efficient approach for large graph instances that evolve over long time periods. While a naive approach would enumerate all O(t^2) sub-intervals, our solution performs an effective pruning of the sub-interval space by considering O(t*log(t)) groups of sub-intervals and computing an aggregate of each group in logarithmic time. We also define a fast heuristic and a tight upper bound for approximating the static version of HDS, and use them for further pruning the sub-interval space and quickly verifying candidate sub-intervals. We perform an extensive experimental evaluation of our algorithm on transportation, communication and social media networks for discovering sub graphs that correspond to traffic congestions, communication overflow and localized social discussions. Our method is two orders of magnitude faster than a naive approach and scales well with network size and time length.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

摘要

不同类型的网络不是静态的实体,而是表现出动态的行为。交通网络中链路的拥塞程度随交通流量的变化而随时间变化。同样,随着信息级联的展开,社会和通信联系也以不同的速度被利用。近年来,人们对动态网络的建模和挖掘越来越感兴趣。然而,对于时间演化网络中高分子图的发现,关注有限。我们定义了在动态网络中寻找得分最高的时间子图的问题,称为最重动态子图(HDS)。我们证明了HDS即使边缘权重为{-1,1}也是NP-hard的,并为长时间演化的大型图实例设计了一种有效的方法。虽然一种朴素的方法会枚举所有O(t^2)个子区间,但我们的解决方案通过考虑O(t*log(t))个子区间组并在对数时间内计算每个组的总和来执行子区间空间的有效修剪。我们还定义了近似HDS静态版本的快速启发式和紧上界,并使用它们进一步修剪子区间空间和快速验证候选子区间。我们对我们的算法在交通、通信和社交媒体网络上进行了广泛的实验评估,以发现与交通拥堵、通信溢出和局部社会讨论相对应的子图。我们的方法比简单的方法快两个数量级,并且可以很好地随网络大小和时间长度进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Heavy Subgraphs in Time-Evolving Networks
Networks from different genres are not static entities, but exhibit dynamic behavior. The congestion level of links in transportation networks varies in time depending on the traffic. Similarly, social and communication links are employed at varying rates as information cascades unfold. In recent years there has been an increase of interest in modeling and mining dynamic networks. However, limited attention has been placed in high-scoring sub graph discovery in time-evolving networks. We define the problem of finding the highest-scoring temporal sub graph in a dynamic network, termed Heaviest Dynamic Sub graph (HDS). We show that HDS is NP-hard even with edge weights in {-1,1} and devise an efficient approach for large graph instances that evolve over long time periods. While a naive approach would enumerate all O(t^2) sub-intervals, our solution performs an effective pruning of the sub-interval space by considering O(t*log(t)) groups of sub-intervals and computing an aggregate of each group in logarithmic time. We also define a fast heuristic and a tight upper bound for approximating the static version of HDS, and use them for further pruning the sub-interval space and quickly verifying candidate sub-intervals. We perform an extensive experimental evaluation of our algorithm on transportation, communication and social media networks for discovering sub graphs that correspond to traffic congestions, communication overflow and localized social discussions. Our method is two orders of magnitude faster than a naive approach and scales well with network size and time length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation Helix: Unsupervised Grammar Induction for Structured Activity Recognition Partitionable Kernels for Mapping Kernels Multi-task Learning for Bayesian Matrix Factorization Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1