迁移:基于图的迁移学习模型

Shizhun Yang, Chenping Hou, Yi Wu
{"title":"迁移:基于图的迁移学习模型","authors":"Shizhun Yang, Chenping Hou, Yi Wu","doi":"10.1109/ACPR.2011.6166601","DOIUrl":null,"url":null,"abstract":"Traditional data mining and machine learning technologies may fail when the training data and the testing data are drawn from different feature spaces and different distributions. Transfer learning, which uses the data from source domain and target domain, can tackle this problem. In this paper, we propose an improved Graph-based Model for Transfer learning (GM-Transfer). We construct a tripartite graph to represent the transfer learning problem and model the relations between the source domain data and the target domain data more efficiently. By learning the informational graph, the knowledge from the source domain data can be transferred to help improve the learning efficiency on the target domain data. Experiments show the effectiveness of our algorithm.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GM-transfer: Graph-based model for transfer learning\",\"authors\":\"Shizhun Yang, Chenping Hou, Yi Wu\",\"doi\":\"10.1109/ACPR.2011.6166601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional data mining and machine learning technologies may fail when the training data and the testing data are drawn from different feature spaces and different distributions. Transfer learning, which uses the data from source domain and target domain, can tackle this problem. In this paper, we propose an improved Graph-based Model for Transfer learning (GM-Transfer). We construct a tripartite graph to represent the transfer learning problem and model the relations between the source domain data and the target domain data more efficiently. By learning the informational graph, the knowledge from the source domain data can be transferred to help improve the learning efficiency on the target domain data. Experiments show the effectiveness of our algorithm.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当训练数据和测试数据来自不同的特征空间和不同的分布时,传统的数据挖掘和机器学习技术可能会失败。使用源域和目标域数据的迁移学习可以解决这一问题。本文提出了一种改进的迁移学习模型(GM-Transfer)。我们构造了一个三部分图来表示迁移学习问题,并更有效地对源域数据和目标域数据之间的关系进行建模。通过对信息图的学习,可以将源领域数据中的知识进行迁移,从而提高对目标领域数据的学习效率。实验证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GM-transfer: Graph-based model for transfer learning
Traditional data mining and machine learning technologies may fail when the training data and the testing data are drawn from different feature spaces and different distributions. Transfer learning, which uses the data from source domain and target domain, can tackle this problem. In this paper, we propose an improved Graph-based Model for Transfer learning (GM-Transfer). We construct a tripartite graph to represent the transfer learning problem and model the relations between the source domain data and the target domain data more efficiently. By learning the informational graph, the knowledge from the source domain data can be transferred to help improve the learning efficiency on the target domain data. Experiments show the effectiveness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1