Shahar Kvatinsky, A. Kolodny, U. Weiser, E. Friedman
{"title":"基于记忆电阻的隐式逻辑设计程序","authors":"Shahar Kvatinsky, A. Kolodny, U. Weiser, E. Friedman","doi":"10.1109/ICCD.2011.6081389","DOIUrl":null,"url":null,"abstract":"Memristors can be used as logic gates. No design methodology exists, however, for memristor-based combinatorial logic. In this paper, the design and behavior of a memristive-based logic gate - an IMPLY gate - are presented and design issues such as the tradeoff between speed (fast write times) and correct logic behavior are described, as part of an overall design methodology. A memristor model is described for determining the write time and state drift. It is shown that the widely used memristor model - a linear ion drift memristor - is impractical for characterizing an IMPLY logic gate, and a different memristor model is necessary such as a memristor with a current threshold.","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"Memristor-based IMPLY logic design procedure\",\"authors\":\"Shahar Kvatinsky, A. Kolodny, U. Weiser, E. Friedman\",\"doi\":\"10.1109/ICCD.2011.6081389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristors can be used as logic gates. No design methodology exists, however, for memristor-based combinatorial logic. In this paper, the design and behavior of a memristive-based logic gate - an IMPLY gate - are presented and design issues such as the tradeoff between speed (fast write times) and correct logic behavior are described, as part of an overall design methodology. A memristor model is described for determining the write time and state drift. It is shown that the widely used memristor model - a linear ion drift memristor - is impractical for characterizing an IMPLY logic gate, and a different memristor model is necessary such as a memristor with a current threshold.\",\"PeriodicalId\":354015,\"journal\":{\"name\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2011.6081389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristors can be used as logic gates. No design methodology exists, however, for memristor-based combinatorial logic. In this paper, the design and behavior of a memristive-based logic gate - an IMPLY gate - are presented and design issues such as the tradeoff between speed (fast write times) and correct logic behavior are described, as part of an overall design methodology. A memristor model is described for determining the write time and state drift. It is shown that the widely used memristor model - a linear ion drift memristor - is impractical for characterizing an IMPLY logic gate, and a different memristor model is necessary such as a memristor with a current threshold.