利用异构内存系统的遗留Fortran代码:存储类内存,DRAM和操作系统的相互作用

Steffen Christgau, T. Steinke
{"title":"利用异构内存系统的遗留Fortran代码:存储类内存,DRAM和操作系统的相互作用","authors":"Steffen Christgau, T. Steinke","doi":"10.1109/MCHPC51950.2020.00008","DOIUrl":null,"url":null,"abstract":"Large capacity Storage Class Memory (SCM) opens new possibilities for workloads requiring a large memory footprint. We examine optimization strategies for a legacy Fortran application on systems with an heterogeneous memory configuration comprising SCM and DRAM. We present a performance study for the multigrid solver component of the large-eddy simulation framework PALM for different memory configurations with large capacity SCM. An important optimization approach is the explicit assignment of storage locations depending on the data access characteristic to take advantage of the heterogeneous memory configuration. We are able to demonstrate that an explicit control over memory locations provides better performance compared to transparent hardware settings. As on aforementioned systems the page management by the OS appears as critical performance factor, we study the impact of different huge page settings.","PeriodicalId":318919,"journal":{"name":"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leveraging a Heterogeneous Memory System for a Legacy Fortran Code: The Interplay of Storage Class Memory, DRAM and OS\",\"authors\":\"Steffen Christgau, T. Steinke\",\"doi\":\"10.1109/MCHPC51950.2020.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large capacity Storage Class Memory (SCM) opens new possibilities for workloads requiring a large memory footprint. We examine optimization strategies for a legacy Fortran application on systems with an heterogeneous memory configuration comprising SCM and DRAM. We present a performance study for the multigrid solver component of the large-eddy simulation framework PALM for different memory configurations with large capacity SCM. An important optimization approach is the explicit assignment of storage locations depending on the data access characteristic to take advantage of the heterogeneous memory configuration. We are able to demonstrate that an explicit control over memory locations provides better performance compared to transparent hardware settings. As on aforementioned systems the page management by the OS appears as critical performance factor, we study the impact of different huge page settings.\",\"PeriodicalId\":318919,\"journal\":{\"name\":\"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCHPC51950.2020.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCHPC51950.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大容量存储类内存(SCM)为需要大量内存占用的工作负载提供了新的可能性。我们研究了在包含SCM和DRAM的异构内存配置的系统上遗留Fortran应用程序的优化策略。本文研究了大涡模拟框架PALM的多网格求解器组件在不同存储器配置下的性能。一个重要的优化方法是根据数据访问特性显式分配存储位置,以利用异构内存配置。我们能够证明,与透明的硬件设置相比,对内存位置的显式控制提供了更好的性能。在上述系统中,操作系统的页面管理似乎是一个关键的性能因素,我们研究了不同的大页面设置的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging a Heterogeneous Memory System for a Legacy Fortran Code: The Interplay of Storage Class Memory, DRAM and OS
Large capacity Storage Class Memory (SCM) opens new possibilities for workloads requiring a large memory footprint. We examine optimization strategies for a legacy Fortran application on systems with an heterogeneous memory configuration comprising SCM and DRAM. We present a performance study for the multigrid solver component of the large-eddy simulation framework PALM for different memory configurations with large capacity SCM. An important optimization approach is the explicit assignment of storage locations depending on the data access characteristic to take advantage of the heterogeneous memory configuration. We are able to demonstrate that an explicit control over memory locations provides better performance compared to transparent hardware settings. As on aforementioned systems the page management by the OS appears as critical performance factor, we study the impact of different huge page settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Potential of Mixed Data Management Modes for Heterogeneous Memory Systems Leveraging a Heterogeneous Memory System for a Legacy Fortran Code: The Interplay of Storage Class Memory, DRAM and OS Persistent Memory Object Storage and Indexing for Scientific Computing Message from the Workshop Chairs Architecting Heterogeneous Memory Systems with DRAM Technology Only: A Case Study on Relational Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1