{"title":"利用异构内存系统的遗留Fortran代码:存储类内存,DRAM和操作系统的相互作用","authors":"Steffen Christgau, T. Steinke","doi":"10.1109/MCHPC51950.2020.00008","DOIUrl":null,"url":null,"abstract":"Large capacity Storage Class Memory (SCM) opens new possibilities for workloads requiring a large memory footprint. We examine optimization strategies for a legacy Fortran application on systems with an heterogeneous memory configuration comprising SCM and DRAM. We present a performance study for the multigrid solver component of the large-eddy simulation framework PALM for different memory configurations with large capacity SCM. An important optimization approach is the explicit assignment of storage locations depending on the data access characteristic to take advantage of the heterogeneous memory configuration. We are able to demonstrate that an explicit control over memory locations provides better performance compared to transparent hardware settings. As on aforementioned systems the page management by the OS appears as critical performance factor, we study the impact of different huge page settings.","PeriodicalId":318919,"journal":{"name":"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Leveraging a Heterogeneous Memory System for a Legacy Fortran Code: The Interplay of Storage Class Memory, DRAM and OS\",\"authors\":\"Steffen Christgau, T. Steinke\",\"doi\":\"10.1109/MCHPC51950.2020.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large capacity Storage Class Memory (SCM) opens new possibilities for workloads requiring a large memory footprint. We examine optimization strategies for a legacy Fortran application on systems with an heterogeneous memory configuration comprising SCM and DRAM. We present a performance study for the multigrid solver component of the large-eddy simulation framework PALM for different memory configurations with large capacity SCM. An important optimization approach is the explicit assignment of storage locations depending on the data access characteristic to take advantage of the heterogeneous memory configuration. We are able to demonstrate that an explicit control over memory locations provides better performance compared to transparent hardware settings. As on aforementioned systems the page management by the OS appears as critical performance factor, we study the impact of different huge page settings.\",\"PeriodicalId\":318919,\"journal\":{\"name\":\"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCHPC51950.2020.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCHPC51950.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging a Heterogeneous Memory System for a Legacy Fortran Code: The Interplay of Storage Class Memory, DRAM and OS
Large capacity Storage Class Memory (SCM) opens new possibilities for workloads requiring a large memory footprint. We examine optimization strategies for a legacy Fortran application on systems with an heterogeneous memory configuration comprising SCM and DRAM. We present a performance study for the multigrid solver component of the large-eddy simulation framework PALM for different memory configurations with large capacity SCM. An important optimization approach is the explicit assignment of storage locations depending on the data access characteristic to take advantage of the heterogeneous memory configuration. We are able to demonstrate that an explicit control over memory locations provides better performance compared to transparent hardware settings. As on aforementioned systems the page management by the OS appears as critical performance factor, we study the impact of different huge page settings.