高斯混合建模在语音识别中的应用

Yaxin Zhang, M. Alder, R. Togneri
{"title":"高斯混合建模在语音识别中的应用","authors":"Yaxin Zhang, M. Alder, R. Togneri","doi":"10.1109/ICASSP.1994.389219","DOIUrl":null,"url":null,"abstract":"The paper describes a speaker-independent isolated word recognition system which uses a well known technique, the combination of vector quantization with hidden Markov modeling. The conventional vector quantization algorithm is substituted by a statistical clustering algorithm, the expectation-maximization algorithm, in this system. Based on the investigation of the data space, the phonemes were manually extracted from the training data and were used to generate the Gaussians in a code book in which each code word is a Gaussian rather than a centroid vector of the data class. Word-based hidden Markov modeling was then performed. Two English isolated digits data bases were investigated and the 12 Mel-spaced filter bank coefficients employed as the input feature. Compared with the conventional discrete HMM, the present system obtained a significant improvement of recognition accuracy.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Using Gaussian mixture modeling in speech recognition\",\"authors\":\"Yaxin Zhang, M. Alder, R. Togneri\",\"doi\":\"10.1109/ICASSP.1994.389219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a speaker-independent isolated word recognition system which uses a well known technique, the combination of vector quantization with hidden Markov modeling. The conventional vector quantization algorithm is substituted by a statistical clustering algorithm, the expectation-maximization algorithm, in this system. Based on the investigation of the data space, the phonemes were manually extracted from the training data and were used to generate the Gaussians in a code book in which each code word is a Gaussian rather than a centroid vector of the data class. Word-based hidden Markov modeling was then performed. Two English isolated digits data bases were investigated and the 12 Mel-spaced filter bank coefficients employed as the input feature. Compared with the conventional discrete HMM, the present system obtained a significant improvement of recognition accuracy.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文描述了一种独立于说话人的孤立词识别系统,该系统采用了一种著名的技术,即向量量化与隐马尔可夫建模相结合。该系统将传统的矢量量化算法替换为一种统计聚类算法,即期望最大化算法。基于对数据空间的研究,从训练数据中手动提取音素并用于生成代码本中的高斯分布,其中每个码字都是高斯分布,而不是数据类的质心向量。然后进行基于词的隐马尔可夫建模。研究了两个英文孤立数字数据库,并采用12个mel间隔的滤波器组系数作为输入特征。与传统的离散HMM相比,该系统的识别精度得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Gaussian mixture modeling in speech recognition
The paper describes a speaker-independent isolated word recognition system which uses a well known technique, the combination of vector quantization with hidden Markov modeling. The conventional vector quantization algorithm is substituted by a statistical clustering algorithm, the expectation-maximization algorithm, in this system. Based on the investigation of the data space, the phonemes were manually extracted from the training data and were used to generate the Gaussians in a code book in which each code word is a Gaussian rather than a centroid vector of the data class. Word-based hidden Markov modeling was then performed. Two English isolated digits data bases were investigated and the 12 Mel-spaced filter bank coefficients employed as the input feature. Compared with the conventional discrete HMM, the present system obtained a significant improvement of recognition accuracy.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new cumulant based parameter estimation method for noncausal autoregressive systems Using Gaussian mixture modeling in speech recognition An evaluation of cross-language adaptation for rapid HMM development in a new language Unsupervised segmentation of radar images using wavelet decomposition and cumulants Improving speech recognition performance via phone-dependent VQ codebooks and adaptive language models in SPHINX-II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1