使用语义分析和图挖掘方法支持软件故障定位

Maninder Singh, G. Walia
{"title":"使用语义分析和图挖掘方法支持软件故障定位","authors":"Maninder Singh, G. Walia","doi":"10.1109/ISSREW51248.2020.00035","DOIUrl":null,"url":null,"abstract":"Software requirement specification (SRS) documents are written in natural language (NL) and are prone to contain faults due to the inherently ambiguous nature of NL. Inspections are employed to find and fix these faults during the early phases of development, where these are the most cost-effective to fix. Inspections being too manual are very tedious and time consuming to perform. After fixing a fault, the SRS author has to manually re-inspect the document to make sure if there are other similar requirements that need a fix, and also if fixing a fault does not reintroduce another fault in the document (i.e., change impact analysis). The proposed approach in this paper employs NL processing, machine learning, semantic analysis, and graph mining approaches to generate a graph of inter-related requirements (IRR) based on semantic similarity score. The IRR graph is next mined using graph mining approaches to analyze the impact of a change. Our approach when applied using a real SRS generated IRR and yielded promising results. Graph mining approaches resulted in a G-mean of more than 90% to accurately identify the highly similar requirements to support the CIA.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Semantic Analysis and Graph Mining Approaches to Support Software Fault Fixation\",\"authors\":\"Maninder Singh, G. Walia\",\"doi\":\"10.1109/ISSREW51248.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software requirement specification (SRS) documents are written in natural language (NL) and are prone to contain faults due to the inherently ambiguous nature of NL. Inspections are employed to find and fix these faults during the early phases of development, where these are the most cost-effective to fix. Inspections being too manual are very tedious and time consuming to perform. After fixing a fault, the SRS author has to manually re-inspect the document to make sure if there are other similar requirements that need a fix, and also if fixing a fault does not reintroduce another fault in the document (i.e., change impact analysis). The proposed approach in this paper employs NL processing, machine learning, semantic analysis, and graph mining approaches to generate a graph of inter-related requirements (IRR) based on semantic similarity score. The IRR graph is next mined using graph mining approaches to analyze the impact of a change. Our approach when applied using a real SRS generated IRR and yielded promising results. Graph mining approaches resulted in a G-mean of more than 90% to accurately identify the highly similar requirements to support the CIA.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

软件需求规范(SRS)文档是用自然语言(NL)编写的,由于自然语言固有的模糊性,SRS文档容易包含错误。在开发的早期阶段,使用检查来查找和修复这些错误,在这些阶段,修复这些错误是最经济有效的。过于手工的检查是非常繁琐和耗时的。在修复了一个故障之后,SRS作者必须手动重新检查文档,以确保是否有其他类似的需求需要修复,以及修复一个故障是否不会在文档中重新引入另一个故障(即,更改影响分析)。本文提出的方法采用自然语言处理、机器学习、语义分析和图挖掘方法来生成基于语义相似度评分的相互关联需求图(IRR)。接下来使用图挖掘方法挖掘IRR图,以分析变更的影响。我们的方法在使用真实的SRS时产生了IRR并产生了有希望的结果。图挖掘方法的g均值超过90%,可以准确识别支持CIA的高度相似的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Semantic Analysis and Graph Mining Approaches to Support Software Fault Fixation
Software requirement specification (SRS) documents are written in natural language (NL) and are prone to contain faults due to the inherently ambiguous nature of NL. Inspections are employed to find and fix these faults during the early phases of development, where these are the most cost-effective to fix. Inspections being too manual are very tedious and time consuming to perform. After fixing a fault, the SRS author has to manually re-inspect the document to make sure if there are other similar requirements that need a fix, and also if fixing a fault does not reintroduce another fault in the document (i.e., change impact analysis). The proposed approach in this paper employs NL processing, machine learning, semantic analysis, and graph mining approaches to generate a graph of inter-related requirements (IRR) based on semantic similarity score. The IRR graph is next mined using graph mining approaches to analyze the impact of a change. Our approach when applied using a real SRS generated IRR and yielded promising results. Graph mining approaches resulted in a G-mean of more than 90% to accurately identify the highly similar requirements to support the CIA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BP-IDS: Using business process specification to leverage intrusion detection in critical infrastructures Techniques and Tools for Advanced Software Vulnerability Detection Challenges Faced with Application Performance Monitoring (APM) when Migrating to the Cloud AHPCap: A Framework for Automated Hardware Profiling and Capture of Mobile Application States Unit Lemmas for Detecting Requirement and Specification Flaws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1