基于时空显著性和拉普拉斯坐标的视频运动目标分割

Hiba Ramadan, H. Tairi
{"title":"基于时空显著性和拉普拉斯坐标的视频运动目标分割","authors":"Hiba Ramadan, H. Tairi","doi":"10.1109/AICCSA.2016.7945726","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for automatic segmentation of moving objects in video based on spatiotemporal saliency and laplacian coordinates (LC). Our algorithm exploits the saliency and the motion information to build a spatio-temporal saliency map, used to extract a moving region of interest (MRI). This region is used to provide automatically the seeds for the segmentation of the moving object using LC. Experiments show a good performance of our algorithm for moving objects segmentation in video without a user interaction, especially on Segtrack dataset.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"58 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moving object segmentation in video using spatiotemporal saliency and laplacian coordinates\",\"authors\":\"Hiba Ramadan, H. Tairi\",\"doi\":\"10.1109/AICCSA.2016.7945726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm for automatic segmentation of moving objects in video based on spatiotemporal saliency and laplacian coordinates (LC). Our algorithm exploits the saliency and the motion information to build a spatio-temporal saliency map, used to extract a moving region of interest (MRI). This region is used to provide automatically the seeds for the segmentation of the moving object using LC. Experiments show a good performance of our algorithm for moving objects segmentation in video without a user interaction, especially on Segtrack dataset.\",\"PeriodicalId\":448329,\"journal\":{\"name\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"volume\":\"58 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2016.7945726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于时空显著性和拉普拉斯坐标的视频运动目标自动分割算法。我们的算法利用显著性和运动信息来构建时空显著性图,用于提取运动感兴趣区域(MRI)。该区域用于自动提供种子,用于使用LC对运动物体进行分割。实验表明,该算法在无用户交互的视频中具有良好的运动目标分割效果,特别是在Segtrack数据集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving object segmentation in video using spatiotemporal saliency and laplacian coordinates
This paper presents a new algorithm for automatic segmentation of moving objects in video based on spatiotemporal saliency and laplacian coordinates (LC). Our algorithm exploits the saliency and the motion information to build a spatio-temporal saliency map, used to extract a moving region of interest (MRI). This region is used to provide automatically the seeds for the segmentation of the moving object using LC. Experiments show a good performance of our algorithm for moving objects segmentation in video without a user interaction, especially on Segtrack dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Foreword — Message from the general chairs Towards a framework for customer emotion detection Development of a thematic and structural elements grid for e-government strategies: Case study of Swiss cantons Complementary features for traffic sign detection and recognition Priority-MAC: A priority based medium access control solution with QoS for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1