统计GPU功率分析使用基于树的方法

Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, J. Peir
{"title":"统计GPU功率分析使用基于树的方法","authors":"Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, J. Peir","doi":"10.1109/IGCC.2011.6008582","DOIUrl":null,"url":null,"abstract":"Graphics Processing Units (GPUs) have emerged as a promising platform for parallel computation. With a large number of scalar processors and abundant memory bandwidth, GPUs provide substantial computation power. While delivering high computation performance, the GPU also consumes high power and needs to be equipped with sufficient power supplies and cooling systems. Therefore, it is essential to institute an efficient mechanism for evaluating and understanding the power consumption requirement when running real applications on high-end GPUs. In this paper, we present a high-level GPU power consumption model using sophisticated tree-based random forest methods which can correlate the power consumption with a set of independent performance variables. This statistical model not only predicts the GPU runtime power consumption accurately, but more importantly, it also provides sufficient insights for understanding the dependence between the GPU runtime power consumption and the individual performance metrics. In order to gain more insights, we use a GPU simulator that can collect more runtime performance metrics than hardware counters. We measure the power consumption of a wide-range of CUDA kernels on an experimental system with GTX 280 GPU as statistical samples for our power analysis. This methodology can certainly be applied to any other CUDA GPU.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Statistical GPU power analysis using tree-based methods\",\"authors\":\"Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, J. Peir\",\"doi\":\"10.1109/IGCC.2011.6008582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics Processing Units (GPUs) have emerged as a promising platform for parallel computation. With a large number of scalar processors and abundant memory bandwidth, GPUs provide substantial computation power. While delivering high computation performance, the GPU also consumes high power and needs to be equipped with sufficient power supplies and cooling systems. Therefore, it is essential to institute an efficient mechanism for evaluating and understanding the power consumption requirement when running real applications on high-end GPUs. In this paper, we present a high-level GPU power consumption model using sophisticated tree-based random forest methods which can correlate the power consumption with a set of independent performance variables. This statistical model not only predicts the GPU runtime power consumption accurately, but more importantly, it also provides sufficient insights for understanding the dependence between the GPU runtime power consumption and the individual performance metrics. In order to gain more insights, we use a GPU simulator that can collect more runtime performance metrics than hardware counters. We measure the power consumption of a wide-range of CUDA kernels on an experimental system with GTX 280 GPU as statistical samples for our power analysis. This methodology can certainly be applied to any other CUDA GPU.\",\"PeriodicalId\":306876,\"journal\":{\"name\":\"2011 International Green Computing Conference and Workshops\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Green Computing Conference and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGCC.2011.6008582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

图形处理单元(gpu)已经成为一个很有前途的并行计算平台。gpu具有大量的标量处理器和丰富的内存带宽,可以提供可观的计算能力。在提供高计算性能的同时,GPU的功耗也很高,需要配备足够的电源和散热系统。因此,在高端gpu上运行实际应用程序时,必须建立一个有效的机制来评估和理解功耗需求。在本文中,我们使用复杂的基于树的随机森林方法提出了一个高级GPU功耗模型,该模型可以将功耗与一组独立的性能变量关联起来。这个统计模型不仅准确地预测了GPU运行时功耗,更重要的是,它还为理解GPU运行时功耗与单个性能指标之间的依赖关系提供了足够的见解。为了获得更多的见解,我们使用了一个GPU模拟器,它可以收集比硬件计数器更多的运行时性能指标。我们使用GTX 280 GPU作为功耗分析的统计样本,在实验系统上测量了各种CUDA内核的功耗。这种方法当然可以应用于任何其他CUDA GPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical GPU power analysis using tree-based methods
Graphics Processing Units (GPUs) have emerged as a promising platform for parallel computation. With a large number of scalar processors and abundant memory bandwidth, GPUs provide substantial computation power. While delivering high computation performance, the GPU also consumes high power and needs to be equipped with sufficient power supplies and cooling systems. Therefore, it is essential to institute an efficient mechanism for evaluating and understanding the power consumption requirement when running real applications on high-end GPUs. In this paper, we present a high-level GPU power consumption model using sophisticated tree-based random forest methods which can correlate the power consumption with a set of independent performance variables. This statistical model not only predicts the GPU runtime power consumption accurately, but more importantly, it also provides sufficient insights for understanding the dependence between the GPU runtime power consumption and the individual performance metrics. In order to gain more insights, we use a GPU simulator that can collect more runtime performance metrics than hardware counters. We measure the power consumption of a wide-range of CUDA kernels on an experimental system with GTX 280 GPU as statistical samples for our power analysis. This methodology can certainly be applied to any other CUDA GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VLSI testing and test power Leakage-aware Kalman filter for accurate temperature tracking Practical performance prediction under Dynamic Voltage Frequency Scaling CACM: Current-aware capacity management in consolidated server enclosures Gureen Game: An energy-efficient QoS control scheme for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1