智慧城市中高效雾到云数据管理的新架构

Amir Sinaeepourfard, Jordi García, X. Masip-Bruin, E. Marín-Tordera
{"title":"智慧城市中高效雾到云数据管理的新架构","authors":"Amir Sinaeepourfard, Jordi García, X. Masip-Bruin, E. Marín-Tordera","doi":"10.1109/ICDCS.2017.202","DOIUrl":null,"url":null,"abstract":"Traditional smart city resources management rely on cloud based solutions to provide a centralized and rich set of open data. The advantages of cloud based frameworks are their ubiquity, (almost) unlimited resources capacity, cost efficiency, as well as elasticity. However, accessing data from the cloud implies large network traffic, high data latencies, and higher security risks. Alternatively, fog computing emerges as a promising technology to absorb these inconveniences. The use of devices at the edge provides closer computing facilities, reduces network traffic and latencies, and improves security. We have defined a new framework for data management in the context of smart city through a global fog to cloud management architecture; in this paper we present the data acquisition block. As a first experiment we estimate the network traffic during data collection, and compare it with a traditional real system. We also show the effectiveness of some basic data aggregation techniques in the model, such as redundant data elimination and data compression.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A Novel Architecture for Efficient Fog to Cloud Data Management in Smart Cities\",\"authors\":\"Amir Sinaeepourfard, Jordi García, X. Masip-Bruin, E. Marín-Tordera\",\"doi\":\"10.1109/ICDCS.2017.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional smart city resources management rely on cloud based solutions to provide a centralized and rich set of open data. The advantages of cloud based frameworks are their ubiquity, (almost) unlimited resources capacity, cost efficiency, as well as elasticity. However, accessing data from the cloud implies large network traffic, high data latencies, and higher security risks. Alternatively, fog computing emerges as a promising technology to absorb these inconveniences. The use of devices at the edge provides closer computing facilities, reduces network traffic and latencies, and improves security. We have defined a new framework for data management in the context of smart city through a global fog to cloud management architecture; in this paper we present the data acquisition block. As a first experiment we estimate the network traffic during data collection, and compare it with a traditional real system. We also show the effectiveness of some basic data aggregation techniques in the model, such as redundant data elimination and data compression.\",\"PeriodicalId\":127689,\"journal\":{\"name\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2017.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

传统的智慧城市资源管理依赖于基于云的解决方案来提供集中而丰富的开放数据集。基于云的框架的优势在于其无处不在、(几乎)无限的资源容量、成本效率以及弹性。但是,从云端访问数据意味着大的网络流量、高的数据延迟和更高的安全风险。或者,雾计算作为一种很有前途的技术出现,以吸收这些不便。在边缘使用设备可以提供更近的计算设施,减少网络流量和延迟,并提高安全性。我们通过全球雾到云的管理架构,定义了智慧城市背景下数据管理的新框架;本文介绍了数据采集模块。作为第一个实验,我们估计了数据采集过程中的网络流量,并将其与传统的真实系统进行了比较。我们还展示了模型中一些基本数据聚合技术的有效性,如冗余数据消除和数据压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Architecture for Efficient Fog to Cloud Data Management in Smart Cities
Traditional smart city resources management rely on cloud based solutions to provide a centralized and rich set of open data. The advantages of cloud based frameworks are their ubiquity, (almost) unlimited resources capacity, cost efficiency, as well as elasticity. However, accessing data from the cloud implies large network traffic, high data latencies, and higher security risks. Alternatively, fog computing emerges as a promising technology to absorb these inconveniences. The use of devices at the edge provides closer computing facilities, reduces network traffic and latencies, and improves security. We have defined a new framework for data management in the context of smart city through a global fog to cloud management architecture; in this paper we present the data acquisition block. As a first experiment we estimate the network traffic during data collection, and compare it with a traditional real system. We also show the effectiveness of some basic data aggregation techniques in the model, such as redundant data elimination and data compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1