{"title":"基于基准损失分布的风险度量","authors":"V. Bignozzi, Matteo Burzoni, Cosimo Munari","doi":"10.2139/ssrn.3088423","DOIUrl":null,"url":null,"abstract":"We introduce a class of quantile-based risk measures that generalize Value at Risk (VaR) and, likewise Expected Shortfall (ES), take into account both the frequency and the severity of losses. Under VaR a single confidence level is assigned regardless of the size of potential losses. We allow for a range of confidence levels that depend on the loss magnitude. The key ingredient is a benchmark loss distribution (BLD), i.e.~a function that associates to each potential loss a maximal acceptable probability of occurrence. The corresponding risk measure, called Loss VaR (LVaR), determines the minimal capital injection that is required to align the loss distribution of a risky position to the target BLD. By design, one has full flexibility in the choice of the BLD profile and, therefore, in the range of relevant quantiles. Special attention is given to piecewise constant functions and to tail distributions of benchmark random losses, in which case the acceptability condition imposed by the BLD boils down to first-order stochastic dominance. We provide a comprehensive study of the main finance theoretical and statistical properties of LVaR with a focus on their comparison with VaR and ES. Merits and drawbacks are discussed and applications to capital adequacy, portfolio risk management and catastrophic risk are presented.","PeriodicalId":269529,"journal":{"name":"Swiss Finance Institute Research Paper Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Risk Measures Based on Benchmark Loss Distributions\",\"authors\":\"V. Bignozzi, Matteo Burzoni, Cosimo Munari\",\"doi\":\"10.2139/ssrn.3088423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a class of quantile-based risk measures that generalize Value at Risk (VaR) and, likewise Expected Shortfall (ES), take into account both the frequency and the severity of losses. Under VaR a single confidence level is assigned regardless of the size of potential losses. We allow for a range of confidence levels that depend on the loss magnitude. The key ingredient is a benchmark loss distribution (BLD), i.e.~a function that associates to each potential loss a maximal acceptable probability of occurrence. The corresponding risk measure, called Loss VaR (LVaR), determines the minimal capital injection that is required to align the loss distribution of a risky position to the target BLD. By design, one has full flexibility in the choice of the BLD profile and, therefore, in the range of relevant quantiles. Special attention is given to piecewise constant functions and to tail distributions of benchmark random losses, in which case the acceptability condition imposed by the BLD boils down to first-order stochastic dominance. We provide a comprehensive study of the main finance theoretical and statistical properties of LVaR with a focus on their comparison with VaR and ES. Merits and drawbacks are discussed and applications to capital adequacy, portfolio risk management and catastrophic risk are presented.\",\"PeriodicalId\":269529,\"journal\":{\"name\":\"Swiss Finance Institute Research Paper Series\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Finance Institute Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3088423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Finance Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3088423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Risk Measures Based on Benchmark Loss Distributions
We introduce a class of quantile-based risk measures that generalize Value at Risk (VaR) and, likewise Expected Shortfall (ES), take into account both the frequency and the severity of losses. Under VaR a single confidence level is assigned regardless of the size of potential losses. We allow for a range of confidence levels that depend on the loss magnitude. The key ingredient is a benchmark loss distribution (BLD), i.e.~a function that associates to each potential loss a maximal acceptable probability of occurrence. The corresponding risk measure, called Loss VaR (LVaR), determines the minimal capital injection that is required to align the loss distribution of a risky position to the target BLD. By design, one has full flexibility in the choice of the BLD profile and, therefore, in the range of relevant quantiles. Special attention is given to piecewise constant functions and to tail distributions of benchmark random losses, in which case the acceptability condition imposed by the BLD boils down to first-order stochastic dominance. We provide a comprehensive study of the main finance theoretical and statistical properties of LVaR with a focus on their comparison with VaR and ES. Merits and drawbacks are discussed and applications to capital adequacy, portfolio risk management and catastrophic risk are presented.