学习分析的挑战:权衡、方法、可扩展性

Radek Pelánek
{"title":"学习分析的挑战:权衡、方法、可扩展性","authors":"Radek Pelánek","doi":"10.1145/3375462.3375463","DOIUrl":null,"url":null,"abstract":"Ryan Baker presented in a LAK 2019 keynote a list of six grand challenges for learning analytics research. The challenges are specified as problems with clearly defined success criteria. Education is, however, a domain full of ill-defined problems. I argue that learning analytics research should reflect this nature of the education domain and focus on less clearly defined, but practically essential issues. As an illustration, I discuss three important challenges of this type: addressing inherent trade-offs in learning environments, the clarification of methodological issues, and the scalability of system development.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Learning analytics challenges: trade-offs, methodology, scalability\",\"authors\":\"Radek Pelánek\",\"doi\":\"10.1145/3375462.3375463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ryan Baker presented in a LAK 2019 keynote a list of six grand challenges for learning analytics research. The challenges are specified as problems with clearly defined success criteria. Education is, however, a domain full of ill-defined problems. I argue that learning analytics research should reflect this nature of the education domain and focus on less clearly defined, but practically essential issues. As an illustration, I discuss three important challenges of this type: addressing inherent trade-offs in learning environments, the clarification of methodological issues, and the scalability of system development.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Ryan Baker在LAK 2019的主题演讲中提出了学习分析研究的六大挑战。挑战被指定为具有明确定义的成功标准的问题。然而,教育是一个充满不明确问题的领域。我认为学习分析研究应该反映教育领域的这一本质,并将重点放在定义不太明确但实际上很重要的问题上。作为一个例子,我讨论了这种类型的三个重要挑战:在学习环境中处理固有的权衡,方法问题的澄清,以及系统开发的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning analytics challenges: trade-offs, methodology, scalability
Ryan Baker presented in a LAK 2019 keynote a list of six grand challenges for learning analytics research. The challenges are specified as problems with clearly defined success criteria. Education is, however, a domain full of ill-defined problems. I argue that learning analytics research should reflect this nature of the education domain and focus on less clearly defined, but practically essential issues. As an illustration, I discuss three important challenges of this type: addressing inherent trade-offs in learning environments, the clarification of methodological issues, and the scalability of system development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How working memory capacity limits success in self-directed learning: a cognitive model of search and concept formation Quantifying data sensitivity: precise demonstration of care when building student prediction models Towards automated analysis of cognitive presence in MOOC discussions: a manual classification study Towards automatic cross-language classification of cognitive presence in online discussions What college students say, and what they do: aligning self-regulated learning theory with behavioral logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1