{"title":"检验单调性的多项式下界","authors":"Aleksandrs Belovs, Eric Blais","doi":"10.1145/2897518.2897567","DOIUrl":null,"url":null,"abstract":"We show that every algorithm for testing n-variate Boolean functions for monotonicityhas query complexity Ω(n1/4). All previous lower bounds for this problem were designed for non-adaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive) monotonicity testers was only Ω(logn). Combined with the query complexity of the non-adaptive monotonicity tester of Khot, Minzer, and Safra (FOCS 2015), our lower bound shows that adaptivity can result in at most a quadratic reduction in the query complexity for testing monotonicity. By contrast, we show that there is an exponential gap between the query complexity of adaptive and non-adaptive algorithms for testing regular linear threshold functions (LTFs) for monotonicity. Chen, De, Servedio, and Tan (STOC 2015)recently showed that non-adaptive algorithms require almost Ω(n1/2) queries for this task. We introduce a new adaptive monotonicity testing algorithm which has query complexity O(logn) when the input is a regular LTF.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A polynomial lower bound for testing monotonicity\",\"authors\":\"Aleksandrs Belovs, Eric Blais\",\"doi\":\"10.1145/2897518.2897567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that every algorithm for testing n-variate Boolean functions for monotonicityhas query complexity Ω(n1/4). All previous lower bounds for this problem were designed for non-adaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive) monotonicity testers was only Ω(logn). Combined with the query complexity of the non-adaptive monotonicity tester of Khot, Minzer, and Safra (FOCS 2015), our lower bound shows that adaptivity can result in at most a quadratic reduction in the query complexity for testing monotonicity. By contrast, we show that there is an exponential gap between the query complexity of adaptive and non-adaptive algorithms for testing regular linear threshold functions (LTFs) for monotonicity. Chen, De, Servedio, and Tan (STOC 2015)recently showed that non-adaptive algorithms require almost Ω(n1/2) queries for this task. We introduce a new adaptive monotonicity testing algorithm which has query complexity O(logn) when the input is a regular LTF.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
摘要
我们证明了每个用于测试n变量布尔函数单调性的算法都具有查询复杂度Ω(n1/4)。该问题的所有先前的下界都是为非自适应算法设计的,因此,一般(可能自适应)单调性测试器的最佳先前下界仅为Ω(logn)。结合Khot, Minzer和Safra (FOCS 2015)的非自适应单调性测试仪的查询复杂度,我们的下界表明,自适应最多可以使测试单调性的查询复杂度降低二次。通过对比,我们发现用于测试正则线性阈值函数(ltf)单调性的自适应和非自适应算法的查询复杂度之间存在指数差距。Chen, De, Servedio和Tan (STOC 2015)最近表明,非自适应算法几乎需要Ω(n /2)次查询才能完成此任务。提出了一种新的自适应单调性测试算法,该算法在输入为正则LTF时查询复杂度为O(logn)。
We show that every algorithm for testing n-variate Boolean functions for monotonicityhas query complexity Ω(n1/4). All previous lower bounds for this problem were designed for non-adaptive algorithms and, as a result, the best previous lower bound for general (possibly adaptive) monotonicity testers was only Ω(logn). Combined with the query complexity of the non-adaptive monotonicity tester of Khot, Minzer, and Safra (FOCS 2015), our lower bound shows that adaptivity can result in at most a quadratic reduction in the query complexity for testing monotonicity. By contrast, we show that there is an exponential gap between the query complexity of adaptive and non-adaptive algorithms for testing regular linear threshold functions (LTFs) for monotonicity. Chen, De, Servedio, and Tan (STOC 2015)recently showed that non-adaptive algorithms require almost Ω(n1/2) queries for this task. We introduce a new adaptive monotonicity testing algorithm which has query complexity O(logn) when the input is a regular LTF.