基于变化点检测的电价预测校准窗口选择

Julia Nasiadka, W. Nitka, R. Weron
{"title":"基于变化点检测的电价预测校准窗口选择","authors":"Julia Nasiadka, W. Nitka, R. Weron","doi":"10.48550/arXiv.2204.00872","DOIUrl":null,"url":null,"abstract":"We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $\\tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Calibration window selection based on change-point detection for forecasting electricity prices\",\"authors\":\"Julia Nasiadka, W. Nitka, R. Weron\",\"doi\":\"10.48550/arXiv.2204.00872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $\\\\tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.\",\"PeriodicalId\":125954,\"journal\":{\"name\":\"International Conference on Conceptual Structures\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Conceptual Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.00872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Conceptual Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.00872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们采用最近提出的一种变化点检测算法,即最小阈值(NOT)方法,来选择与当前记录值相似的过去观测的子周期。然后,与以最近的$\tau$观测值作为校准样本的传统时间序列方法相反,我们仅对这些子周期的数据估计自回归模型。我们使用具有挑战性的数据集(德国EPEX现货市场的日前电价)来说明我们的方法,并观察到与常用方法(包括自回归混合最近邻(ARHNN)方法)相比,预测精度有显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibration window selection based on change-point detection for forecasting electricity prices
We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $\tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameter Tuning of the Firefly Algorithm by Standard Monte Carlo and Quasi-Monte Carlo Methods Streaming Detection of Significant Delay Changes in Public Transport Systems Graph Extraction for Assisting Crash Simulation Data Analysis Epistemic and Aleatoric Uncertainty Quantification and Surrogate Modelling in High-Performance Multiscale Plasma Physics Simulations Automating the Analysis of Institutional Design in International Agreements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1