{"title":"浮点数压缩的多阶段方法","authors":"Kevin Townsend, Joseph Zambreno","doi":"10.1109/EIT.2015.7293348","DOIUrl":null,"url":null,"abstract":"This paper presents a lossless double-precision floating point compression algorithm. Floating point compression can reduce the cost of storing and transmitting large amounts of data associated with big data problems. A previous algorithm called FPC performs well and uses predictors. However, predictors have limitations. Our program (fzip) overcomes some of these limitations, fzip has 2 phases, first BWT compression, second value and prefix compression with variable length arithmetic encoding. This approach has the advantage that the phases work together and each phase compresses a different type of pattern. On average, fzip achieves a 20% higher compression ratio than other algorithms.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A multi-phase approach to floating-point compression\",\"authors\":\"Kevin Townsend, Joseph Zambreno\",\"doi\":\"10.1109/EIT.2015.7293348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a lossless double-precision floating point compression algorithm. Floating point compression can reduce the cost of storing and transmitting large amounts of data associated with big data problems. A previous algorithm called FPC performs well and uses predictors. However, predictors have limitations. Our program (fzip) overcomes some of these limitations, fzip has 2 phases, first BWT compression, second value and prefix compression with variable length arithmetic encoding. This approach has the advantage that the phases work together and each phase compresses a different type of pattern. On average, fzip achieves a 20% higher compression ratio than other algorithms.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-phase approach to floating-point compression
This paper presents a lossless double-precision floating point compression algorithm. Floating point compression can reduce the cost of storing and transmitting large amounts of data associated with big data problems. A previous algorithm called FPC performs well and uses predictors. However, predictors have limitations. Our program (fzip) overcomes some of these limitations, fzip has 2 phases, first BWT compression, second value and prefix compression with variable length arithmetic encoding. This approach has the advantage that the phases work together and each phase compresses a different type of pattern. On average, fzip achieves a 20% higher compression ratio than other algorithms.