Vincent Cohen-Addad, Éric Colin de Verdière, P. Klein, Claire Mathieu, David Meierfrankenfeld
{"title":"加权有界格图中连通性支配的逼近","authors":"Vincent Cohen-Addad, Éric Colin de Verdière, P. Klein, Claire Mathieu, David Meierfrankenfeld","doi":"10.1145/2897518.2897635","DOIUrl":null,"url":null,"abstract":"We present a framework for addressing several problems on weighted planar graphs and graphs of bounded genus. With that framework, we derive polynomial-time approximation schemes for the following problems in planar graphs or graphs of bounded genus: edge-weighted tree cover and tour cover; vertex-weighted connected dominating set, max-weight-leaf spanning tree, and connected vertex cover. In addition, we obtain a polynomial-time approximation scheme for feedback vertex set in planar graphs. These are the first polynomial-time approximation schemes for all those problems in weighted embedded graphs. (For unweighted versions of some of these problems, polynomial-time approximation schemes were previously given using bidimensionality.)","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Approximating connectivity domination in weighted bounded-genus graphs\",\"authors\":\"Vincent Cohen-Addad, Éric Colin de Verdière, P. Klein, Claire Mathieu, David Meierfrankenfeld\",\"doi\":\"10.1145/2897518.2897635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for addressing several problems on weighted planar graphs and graphs of bounded genus. With that framework, we derive polynomial-time approximation schemes for the following problems in planar graphs or graphs of bounded genus: edge-weighted tree cover and tour cover; vertex-weighted connected dominating set, max-weight-leaf spanning tree, and connected vertex cover. In addition, we obtain a polynomial-time approximation scheme for feedback vertex set in planar graphs. These are the first polynomial-time approximation schemes for all those problems in weighted embedded graphs. (For unweighted versions of some of these problems, polynomial-time approximation schemes were previously given using bidimensionality.)\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximating connectivity domination in weighted bounded-genus graphs
We present a framework for addressing several problems on weighted planar graphs and graphs of bounded genus. With that framework, we derive polynomial-time approximation schemes for the following problems in planar graphs or graphs of bounded genus: edge-weighted tree cover and tour cover; vertex-weighted connected dominating set, max-weight-leaf spanning tree, and connected vertex cover. In addition, we obtain a polynomial-time approximation scheme for feedback vertex set in planar graphs. These are the first polynomial-time approximation schemes for all those problems in weighted embedded graphs. (For unweighted versions of some of these problems, polynomial-time approximation schemes were previously given using bidimensionality.)