K. P. Mathos, Hagninou E. V. Donnou, G. Houngue, B. Kounouhewa
{"title":"根据几内亚科纳克里大气稳定等级的垂直风廓线特征","authors":"K. P. Mathos, Hagninou E. V. Donnou, G. Houngue, B. Kounouhewa","doi":"10.9734/psij/2021/v25i1130293","DOIUrl":null,"url":null,"abstract":"The characteristics of the vertical wind profile and the wind potential study on the Conakry site for each atmospheric stability class were investigated in this study. Wind speed and air temperature data recorded over the period from January 2001 to December 2019 at 10 m and 50 m above the ground at daily (50 m) and hourly (10 m) scales were used. The wind shear parameters were determined from the logarithmic and power law. Based on the Newman and Klein wind shear model, a new formulation of this parameter was proposed as a function of the Obukhov length at order 2 and calibrated from the measurements using the simplex algorithm of Nelder and Mead. From the Weibull parameters obtained for the stable and unstable period of the atmosphere, the available wind potential at Conakry was estimated from 10 m to 80 m. The results indicate that the annual average of the ground roughness length is 1.7 x 10-2 m. The annual average of the ground friction velocity is 0.19 m.s-1. The atmosphere remains stable at the Conakry site from 09 p.m. to 10 a.m. and unstable from 10 a.m. to 09 p.m. The proposed wind shear formulation gives a better estimation of the wind speed in function of altitude with the lowest values of RMSE and MAE (4.5x10-4 ; 3.8x10-4) m.s-1 in stable and unstable periods (0.09 ; 0.07) m.s-1 compared to some models found in the literature. The mean annual wind shear coefficient in stable period is 0.26 and in unstable period 0.28. The annual mean shape parameter from 10 m to 80 m above ground in stable period is between 1.25 and 1.64, and during unstable period, it varies from 1.55 to 2.07. The annual mean scale parameter at 10 m and 80 m above ground is (3.9; 7.10) m.s-1 (unstable atmosphere) and (2.45; 4.41) m.s-1 when the atmosphere is stable. The annual average of the energy production under a convective atmosphere at 10 m and 80 m is estimated at 72 W.m-2 and 301 W.m-2 respectively. During the night cycle, this annual production varies from 28 W.m-2 (10 m) to 93 W.m-2 (80 m). Based on these results, the Conakry site is suitable to host medium-sized wind power plants for electricity and water production.","PeriodicalId":124795,"journal":{"name":"Physical Science International Journal","volume":"47 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterisation of the Vertical Wind Profile According to the Stability Classes of the Atmosphere in Conakry, Guinea\",\"authors\":\"K. P. Mathos, Hagninou E. V. Donnou, G. Houngue, B. Kounouhewa\",\"doi\":\"10.9734/psij/2021/v25i1130293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characteristics of the vertical wind profile and the wind potential study on the Conakry site for each atmospheric stability class were investigated in this study. Wind speed and air temperature data recorded over the period from January 2001 to December 2019 at 10 m and 50 m above the ground at daily (50 m) and hourly (10 m) scales were used. The wind shear parameters were determined from the logarithmic and power law. Based on the Newman and Klein wind shear model, a new formulation of this parameter was proposed as a function of the Obukhov length at order 2 and calibrated from the measurements using the simplex algorithm of Nelder and Mead. From the Weibull parameters obtained for the stable and unstable period of the atmosphere, the available wind potential at Conakry was estimated from 10 m to 80 m. The results indicate that the annual average of the ground roughness length is 1.7 x 10-2 m. The annual average of the ground friction velocity is 0.19 m.s-1. The atmosphere remains stable at the Conakry site from 09 p.m. to 10 a.m. and unstable from 10 a.m. to 09 p.m. The proposed wind shear formulation gives a better estimation of the wind speed in function of altitude with the lowest values of RMSE and MAE (4.5x10-4 ; 3.8x10-4) m.s-1 in stable and unstable periods (0.09 ; 0.07) m.s-1 compared to some models found in the literature. The mean annual wind shear coefficient in stable period is 0.26 and in unstable period 0.28. The annual mean shape parameter from 10 m to 80 m above ground in stable period is between 1.25 and 1.64, and during unstable period, it varies from 1.55 to 2.07. The annual mean scale parameter at 10 m and 80 m above ground is (3.9; 7.10) m.s-1 (unstable atmosphere) and (2.45; 4.41) m.s-1 when the atmosphere is stable. The annual average of the energy production under a convective atmosphere at 10 m and 80 m is estimated at 72 W.m-2 and 301 W.m-2 respectively. During the night cycle, this annual production varies from 28 W.m-2 (10 m) to 93 W.m-2 (80 m). Based on these results, the Conakry site is suitable to host medium-sized wind power plants for electricity and water production.\",\"PeriodicalId\":124795,\"journal\":{\"name\":\"Physical Science International Journal\",\"volume\":\"47 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Science International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/psij/2021/v25i1130293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/psij/2021/v25i1130293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究了科纳克里站点各大气稳定性等级的垂直风廓线特征和风势研究。使用了2001年1月至2019年12月在距离地面10米和50米的日(50米)和时(10米)尺度上的风速和气温数据。根据对数和幂律确定风切变参数。基于Newman和Klein风切变模型,提出了该参数作为2阶Obukhov长度的函数的新公式,并使用Nelder和Mead的单纯形算法从测量结果中进行了校准。根据获得的大气稳定和不稳定期的Weibull参数,估计了科纳克里的可用风势在10 ~ 80 m之间。结果表明,年平均地表粗糙度长度为1.7 × 10-2 m。年平均地面摩擦速度为0.19 ms -1。从晚上9点至上午10点,科纳克里场址的大气保持稳定,从上午10点至晚上9点,大气不稳定。提出的风切变公式能较好地估计风速与海拔的关系,RMSE和MAE的最低值为4.5x10-4;3.8x10-4) m.s-1在稳定和不稳定时期(0.09;0.07) ms -1与文献中发现的一些模型相比。稳定期年均风切变系数为0.26,不稳定期年均风切变系数为0.28。稳定时期地表以上10 ~ 80 m的年平均形状参数在1.25 ~ 1.64之间,不稳定时期在1.55 ~ 2.07之间。10 m和80 m的年平均尺度参数为(3.9;7.10) m.s-1(不稳定大气)和2.45;4.41) m - s-1,当大气稳定时。在10米和80米的对流大气下,年平均能量产量分别为72和301 W.m-2。在夜间周期,这一年产量从28 w - m-2(10米)到93 w - m-2(80米)不等。基于这些结果,科纳克里场地适合举办中型风力发电厂进行电力和水生产。
Characterisation of the Vertical Wind Profile According to the Stability Classes of the Atmosphere in Conakry, Guinea
The characteristics of the vertical wind profile and the wind potential study on the Conakry site for each atmospheric stability class were investigated in this study. Wind speed and air temperature data recorded over the period from January 2001 to December 2019 at 10 m and 50 m above the ground at daily (50 m) and hourly (10 m) scales were used. The wind shear parameters were determined from the logarithmic and power law. Based on the Newman and Klein wind shear model, a new formulation of this parameter was proposed as a function of the Obukhov length at order 2 and calibrated from the measurements using the simplex algorithm of Nelder and Mead. From the Weibull parameters obtained for the stable and unstable period of the atmosphere, the available wind potential at Conakry was estimated from 10 m to 80 m. The results indicate that the annual average of the ground roughness length is 1.7 x 10-2 m. The annual average of the ground friction velocity is 0.19 m.s-1. The atmosphere remains stable at the Conakry site from 09 p.m. to 10 a.m. and unstable from 10 a.m. to 09 p.m. The proposed wind shear formulation gives a better estimation of the wind speed in function of altitude with the lowest values of RMSE and MAE (4.5x10-4 ; 3.8x10-4) m.s-1 in stable and unstable periods (0.09 ; 0.07) m.s-1 compared to some models found in the literature. The mean annual wind shear coefficient in stable period is 0.26 and in unstable period 0.28. The annual mean shape parameter from 10 m to 80 m above ground in stable period is between 1.25 and 1.64, and during unstable period, it varies from 1.55 to 2.07. The annual mean scale parameter at 10 m and 80 m above ground is (3.9; 7.10) m.s-1 (unstable atmosphere) and (2.45; 4.41) m.s-1 when the atmosphere is stable. The annual average of the energy production under a convective atmosphere at 10 m and 80 m is estimated at 72 W.m-2 and 301 W.m-2 respectively. During the night cycle, this annual production varies from 28 W.m-2 (10 m) to 93 W.m-2 (80 m). Based on these results, the Conakry site is suitable to host medium-sized wind power plants for electricity and water production.