胰腺癌生物标志物发现的代谢组学分析

Prabhjit Kaur, K. Sheikh, A. Kirilyuk, Ksenia Kirilyuk, H. Ressom, A. Cheema, B. Kallakury
{"title":"胰腺癌生物标志物发现的代谢组学分析","authors":"Prabhjit Kaur, K. Sheikh, A. Kirilyuk, Ksenia Kirilyuk, H. Ressom, A. Cheema, B. Kallakury","doi":"10.1109/BIBM.2010.5706618","DOIUrl":null,"url":null,"abstract":"Pancreatic cancer (PC) is the fourth leading cause of cancer death in the United States, with 4% survival 5 years after diagnosis. Patients with pancreatic cancer are usually diagnosed at late stages, when the disease is incurable. Sensitive and more specific biomarkers are thus critical for supporting new prevention, diagnostic or therapeutic strategies. Here, we report mass spectrometry-based metabolomic profiling of human pancreatic tumor and normal tissue. Multivariate data analysis shows significant alterations in the profiles of the tumor metabolome as compared to the normal. These findings offer an information-rich matrix for discovering novel biomarkers with potential for diagnostic or prognostic purposes.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Metabolomic profiling for biomarker discovery in pancreatic cancer\",\"authors\":\"Prabhjit Kaur, K. Sheikh, A. Kirilyuk, Ksenia Kirilyuk, H. Ressom, A. Cheema, B. Kallakury\",\"doi\":\"10.1109/BIBM.2010.5706618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pancreatic cancer (PC) is the fourth leading cause of cancer death in the United States, with 4% survival 5 years after diagnosis. Patients with pancreatic cancer are usually diagnosed at late stages, when the disease is incurable. Sensitive and more specific biomarkers are thus critical for supporting new prevention, diagnostic or therapeutic strategies. Here, we report mass spectrometry-based metabolomic profiling of human pancreatic tumor and normal tissue. Multivariate data analysis shows significant alterations in the profiles of the tumor metabolome as compared to the normal. These findings offer an information-rich matrix for discovering novel biomarkers with potential for diagnostic or prognostic purposes.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

胰腺癌(PC)是美国癌症死亡的第四大原因,诊断后5年生存率为4%。胰腺癌患者通常在晚期才被诊断出来,那时这种疾病是无法治愈的。因此,敏感和更特异的生物标志物对于支持新的预防、诊断或治疗策略至关重要。在这里,我们报告了基于质谱的人类胰腺肿瘤和正常组织的代谢组学分析。多变量数据分析显示,与正常人相比,肿瘤代谢组谱发生了显著变化。这些发现为发现具有潜在诊断或预后目的的新型生物标志物提供了一个信息丰富的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolomic profiling for biomarker discovery in pancreatic cancer
Pancreatic cancer (PC) is the fourth leading cause of cancer death in the United States, with 4% survival 5 years after diagnosis. Patients with pancreatic cancer are usually diagnosed at late stages, when the disease is incurable. Sensitive and more specific biomarkers are thus critical for supporting new prevention, diagnostic or therapeutic strategies. Here, we report mass spectrometry-based metabolomic profiling of human pancreatic tumor and normal tissue. Multivariate data analysis shows significant alterations in the profiles of the tumor metabolome as compared to the normal. These findings offer an information-rich matrix for discovering novel biomarkers with potential for diagnostic or prognostic purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1